Home OALib Journal OALib PrePrints Submit Ranking News My Lib FAQ About Us Follow Us+
 All Title Author Keywords Abstract
 Publish in OALib Journal ISSN: 2333-9721 APC: Only \$99

 Relative Articles ？“九合诸候”之“九”义考？ 《广雅疏证》以“凡”语说明 “名”、“实”、“义”关系情况浅析 合模机构注射中的力学问题 中型注塑机合模装置的模糊综合评判 新型肘杆式合模机构优化设计 复杂断面空心铝型材分流模挤压焊合过程金属流变行为分析 异形管材分流模挤压焊合过程金属流变及模具受力的模拟分析 几何参数化计算的柴油机冷却风道键合图模 广陈皮 古音研究中的“以义正音” 《滕学义建祠碑》考释 More...

一类流体混合模型的广义差分法Generalized Difference Methods for a Fluid Mixture Model

DOI: 10.12677/app.2012.22006, PP. 35-40

 Full-Text   Cite this paper

Abstract:

In this paper, we propose two numerical methods for a fluid mixture model. The model is usually used to describe the tissue deformations. It contains a nonlinear hyperbolic equation and an elliptic equation. The first numerical method is the generalized difference method based on linear element function space and piecewise constant function space. Numerical experiments show that our scheme is second-order accuracy in space. To eliminate the oscillation near the discontinuities, we design a generalized upwind difference method to solve the fluid model. Numerical results show that the two methods are effective for the considered fluid mixture model.

References

 [1] M. Dembo, F. Harlow. Cell motion, constractile networks, and the physics of interpenetrating reactive flow. Biophysical Journal, 1986, 50(1): 109-121. [2] D. Manoussaki, S. R. Lubkin, R. B. Vernon, et al. A mechanical model for the formation of vascular networks in vitro. Acta Biotheoretica, 1996, 44(3-4): 271-282. [3] G. Szekely, C. Brechbuhler, R. Hutter, et al. Modelling of soft tissue deformation for laparoscopic surgery. Simulation, Medical Image Analysis, 2000, 4(1): 57-66. [4] W. Mollemans, F. Schutyser, J. Cleynenbreugel and P. Suetens. Tetrahedral mass spring model for fast soft tissue deformation. International Symposium on Surgery Simulation and Soft Tissue Modeling, 2003, 1673: 145-154. [5] S. R. Lubkin, T. Jackson. Multiphase mechanics of capsule formation in tumors. Journal of Biomechanical Engineering, 2002, 124(2): 1-7. [6] X. He, M. Dembo. Numerical simulation of oil-droplet cleavage by surfactant. Journal of Biomechanical Engineering, 1996, 118 (2): 201-209. [7] M. Stastna. A moving boundary value problem in soft tissue mechanics. Journal of Canadian Applied Mathematics Quarterly, 2005, 13(2): 183-198. [8] Q. Jiang, Z. Li and S. R. Lubkin. Analysis and computation for a fluid mixture model. Communication in Computational Physics, 2009, 5: 620-634. [9] R. Li, Z. Chen and W. Wu. Generalized difference methods for differential equation: Numerical analysis of finite volume methods. New York: Marcel Dekker, 1999. [10] Z. Zhang. Error estimate of finite volume element method for the pollution in ground-water flow. Numerical Method for Partial Differential Equations, 2009, 25(2): 259-274. [11] 王平, 张志跃. 有限体积元数值方法在大气污染模式中的应用[J]. 计算物理, 2009, 26(5): 656-664. [12] F. Gao, Y. Yuan. The characteristic finite volume element method for the nonlinear convection-dominated diffusion problem. Computers and Mathematics with Applications, 2008, 56(1): 71- 81. [13] E. Richard, L. Raytcho and Y. Lin. Finite volume element approximations of nonlocal reactive flows in porous media. Numerical Method for Partial Differential Equations, 2000, 16(3): 285-311. [14] 张文生. 科学计算中的偏微分方程有限差分法[M]. 北京: 高等教育出版社, 2006. [15] E. P. Doolan, J. J. H. Miller and W. H. A. Schilders. Uniform numerical methods for problems with initial and boundary layers. Dublin: Boole, 1980.

Full-Text