|
Pure Mathematics 2012
带有非自治项的非线性Schrödinger方程的基态解的存在性
|
Abstract:
本文考虑如下形式的非线性Schr?dinger方程 (P)。利用有界区域逼近和集中紧致原理,当位势函数
不恒等于常数,非线性项
不恒等于
,本文证明了方程(P)存在最低能量解。
In this paper, we are concerned with the following nonlinear Schr?dinger equation
(P). By using the bounded domain approximate scheme and concen-tration compactness principle, we prove the existence of a ground state solution of (P) on the Nehari manifold when
constant and
.
[1] | L. Jeanjean. On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer-type problem set on RN. Proceedings of the Royal Society of Edinburgh, 1999, 129(4): 787-809. |
[2] | L. Jeanjean, K, Tanaka. A positive solution for an asymptotically linear elliptic problem on RN autonomous at infinity. ESAIM Control Optimisation and Calcules of Variations, 2002, 7: 597-614. |
[3] | L. Jeanjean, K. Tanaka. A positive solution for a linear Schr?dinger equation on RN. Indiana University Mathematics Journal, 2005, 54(2): 443-464. |
[4] | C. Y. Liu, Z. P. Wang and H. S. Zhou. Asymptotically of nonlinear Schr?dinger equation with potential vanishing at infinity. Journal of Differential Equations, 2008, 245(1): 201-222. |
[5] | G. Li, H. S. Zhou. The existence of a positive solution to asymptotically linear scalar field equation. Proceedings of the Royal Societyof Edinburgh, 2000, 130(1): 81-105. |
[6] | H. B. Zhu. A note on asymptotically linear Schr?dinger equation on RN. Advanced Nonlinear Studies, 2009, 9(1): 81-94. |
[7] | A. Ambrosetti, P. H. Rabinowitz. Dual variational methods in critical point theory and application. Journal of Functional Analysis, 1973, 14(4): 349-381. |
[8] | Z. L. Liu, Z. Q. Wang. On the Ambrosetti-Rabinowitz superlinear condition. Advanced Nonlinear Studies, 2004, 4(4): 561-572. |
[9] | Y. Q. Li, Z. Q. Wang and J. Zeng. Ground states of nonlinear Schr?dinger equations with potentials. Annales de I’Institut Henri Poincare, 2006, 23(6): 829-837. |
[10] | M. Willem. Minimax theorems. Boston: Birkhauser, 1996. |
[11] | X. P. Zhu, D. M. Cao. The concentration-compactness principle in nonlinear elliptic equations. Acta Mathematica Scientia, 1989, 9(3): 307-323. |
[12] | P. L. Lions. The concentration-compactness principle in the calculus of variation. The locally compact case, Part I and II. Annales de I’Institut Henri Poincare, 1984, 1(4): 109-145, 223-283. |