All Title Author
Keywords Abstract

Ground States of Nonlinear Schrödinger Equation with Non-Autonomous Nonlinearity

DOI: 10.12677/pm.2012.22011, PP. 62-72

Keywords: 非线性Schrödinger方程;基态解;集中紧致原理
Nonlinear Schrödinger Equation
, Ground State Solutions, Concentration Compactness

Full-Text   Cite this paper   Add to My Lib


本文考虑如下形式的非线性Schr?dinger方程 (P)。利用有界区域逼近和集中紧致原理,当位势函数不恒等于常数,非线性项 不恒等于 ,本文证明了方程(P)存在最低能量解。
In this paper, we are concerned with the following nonlinear Schr?dinger equation
(P). By using the bounded domain approximate scheme and concen-tration compactness principle, we prove the existence of a ground state solution of (P) on the Nehari manifold when constant and .


[1]  L. Jeanjean. On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer-type problem set on RN. Proceedings of the Royal Society of Edinburgh, 1999, 129(4): 787-809.
[2]  L. Jeanjean, K, Tanaka. A positive solution for an asymptotically linear elliptic problem on RN autonomous at infinity. ESAIM Control Optimisation and Calcules of Variations, 2002, 7: 597-614.
[3]  L. Jeanjean, K. Tanaka. A positive solution for a linear Schr?dinger equation on RN. Indiana University Mathematics Journal, 2005, 54(2): 443-464.
[4]  C. Y. Liu, Z. P. Wang and H. S. Zhou. Asymptotically of nonlinear Schr?dinger equation with potential vanishing at infinity. Journal of Differential Equations, 2008, 245(1): 201-222.
[5]  G. Li, H. S. Zhou. The existence of a positive solution to asymptotically linear scalar field equation. Proceedings of the Royal Societyof Edinburgh, 2000, 130(1): 81-105.
[6]  H. B. Zhu. A note on asymptotically linear Schr?dinger equation on RN. Advanced Nonlinear Studies, 2009, 9(1): 81-94.
[7]  A. Ambrosetti, P. H. Rabinowitz. Dual variational methods in critical point theory and application. Journal of Functional Analysis, 1973, 14(4): 349-381.
[8]  Z. L. Liu, Z. Q. Wang. On the Ambrosetti-Rabinowitz superlinear condition. Advanced Nonlinear Studies, 2004, 4(4): 561-572.
[9]  Y. Q. Li, Z. Q. Wang and J. Zeng. Ground states of nonlinear Schr?dinger equations with potentials. Annales de I’Institut Henri Poincare, 2006, 23(6): 829-837.
[10]  M. Willem. Minimax theorems. Boston: Birkhauser, 1996.
[11]  X. P. Zhu, D. M. Cao. The concentration-compactness principle in nonlinear elliptic equations. Acta Mathematica Scientia, 1989, 9(3): 307-323.
[12]  P. L. Lions. The concentration-compactness principle in the calculus of variation. The locally compact case, Part I and II. Annales de I’Institut Henri Poincare, 1984, 1(4): 109-145, 223-283.


comments powered by Disqus