All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles

Spectral properties of LH2 exhibit very similar even when heterologously express LH2 with <i>β</i>-subunit fusion protein in <i>Rhodobacter</i> <i>sphaeroides</i>

Effect of the mutation of carotenoids on the dynamics of energy transfer in light-harvesting complexes (LH2) from Rhodobacter sphaeroides 601 at room temperature
Effect of the mutation of carotenoids on the dynamics of energy transfer in light-harvesting complexes (LH2) from Rhodobacter sphaeroides 601 at room temperature

Excited-state dynamics in light-harvesting complex of Rhodobacter sphaeroides


Acquirement and characterization of a carotenoid mutant (GM309) of Rhodobacter sphaeroides 601

The Effect of Aeration, Agitation and Light on Biohydrogen Production by Rhodobacter sphaeroides NCIMB 8253

The Effects of Different Carbon Sources on the Growth of Rhodobacter sphaeroides

The prevalence of gene duplications and their ancient origin in Rhodobacter sphaeroides 2.4.1

CtrA Is Nonessential for Cell Cycle Regulation in Rhodobacter sphaeroides

Role of the Irr Protein in the Regulation of Iron Metabolism in Rhodobacter sphaeroides

Granular Sludge Formation and Chlorobenzene Degradation by Rhodobacter Sphaeroides


Spectral properties of LH2 exhibit very similar even when heterologously express LH2 with β-subunit fusion protein in Rhodobacter sphaeroides

DOI: 10.4236/abc.2013.31013, PP. 101-107

Keywords: LH2, Spectral Property, FT-IR, Photopigment

Full-Text   Cite this paper   Add to My Lib


Interactions between the light-harvesting subunits and the non-covalently bound photopigments attribute considerably to the spectral properties of photosynthetic bacteria light-harvesting complexes. In our previous studies, we have constructed a novel Rhodobacter sphaeroides expression system. In the present study, we focus on the spectral properties of LH2 when heterologously express LH2 with β-subunit- GFP fusion protein in Rb. sphaeroides. Near infra-red spectrum of LH2 remained nearly unchanged as measured by spectroscopy. Fluorescence spectrum suggested that the LH2 with β-subunit-GFP fusion protein complexes still possessed normal activity in energy transfer. However, photopigments contents were significantly decreased to a very low level in the LH2 with β-subunit-GFP fusion protein complexes compared to that of LH2. FT-IR spectra indicated that interactions between photopigments and LH2 α/β- subunits appeared not to be changed. It was concluded that the LH2 spectral properties exhibited very similar even when heterologously expressed LH2 b-subunit fusion protein in Rb. sphaeroides. Our present study may supply a new insight into better understand the interactions between light-harvesting subunits and photopigments and bacterial photosynthesis and promote the development of the novel Rb. sphaeroides expression system.


[1]  Tucker, J.D., Siebert, C.A., Escalante, M., et al. (2010) Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles. Molecular Microbiology, 4, 833-847. doi:10.1111/j.1365-2958.2010.07153.x
[2]  Pugh, R.J., McGlynn, P., Jones, M.R., et al. (1998) The LH1-RC core complex of Rhodobacter sphaeroides: Interaction between components, time-dependent assembly, and topology of the PufX protein. Biochimica et Bio physica Acta, 3, 301-316.
[3]  Olsen, J.D., Tucker, J.D., Timney, J.A., et al. (2008) The organization of LH2 complexes in membranes from Rhodobacter sphaeroides. Journal of Biological Chemis try, 45, 30772-30779. doi:10.1074/jbc.M804824200
[4]  Zeilstra-Ryalls, J., Gomelsky, M., Eraso, J.M., et al. (1998) Control of photosystem formation in Rhodobacter sphaeroides. Journal of Bacteriology, 11, 2801-2809.
[5]  Boonstra, A.F., Visschers, R.W., Calkoen, F., et al. (1993) Structural characterization of the B800-850 and B875 light-harvesting antenna complexes from Rhodobacter sphaeroides by electron microscopy. Biochimica et Biophysica Acta, 50, 181-188.
[6]  Hu, X., Damjanovic, A., Ritz, T., et al. (1998) Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proceedings of the National Academy of Sciences of the USA, 11, 5935-5941. doi:10.1073/pnas.95.11.5935
[7]  Walz, T., Jamieson, S.J., Bowers, C.M., et al. (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 ?, LH1 and RC-LH1 at 25 A. Journal of Molecular Biology, 4, 833-845. doi:10.1006/jmbi.1998.2050
[8]  Lang, H.P. and Hunter, C.N. (1994) The relationship between carotenoid biosynthesis and the assembly of the light-harvesting LH2 complex in Rhodobacter sphaeroides. Biochemical Journal, 298, 197-205.
[9]  McDermott, G., Prince, S.M., Freer, A.A., et al. (1995) Crystal structure of an integral membrane light-harves ting complex from photosynthetic bacteria. Nature, 374, 517-521. doi:10.1038/374517a0
[10]  Braun, P., Gebhardt, R., Kwa, L., et al. (2005) High pressure near infrared study of the mutated light-har vesting complex LH2. Brazilian Journal of Medical and Biological Research, 8, 1273-1278.
[11]  Law, C.J., Roszak, A.W., Southall, J., et al. (2004) The structure and function of bacterial light-harvesting complexes. Molecular Membrane Biology, 3, 183-191. doi:10.1080/09687680410001697224
[12]  Urboniene, V., Vrublevskaja, O., Trinkunas, G., et al. (2007) Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2. Biophysical Journal, 6, 2188-2198. doi:10.1529/biophysj.106.103093
[13]  Pandit, A., Buda, F., van Gammeren, A.J., et al. (2010) Selective chemical shift assignment of bacteriochloro phyll a in uniformly [13C-15N]-labeled light-harvesting 1 complexes by solid-state NMR in ultrahigh magnetic field. Journal of Physical Chemistry B, 18, 6207-6215. doi:10.1021/jp100688u
[14]  Fowler, G.J., Sockalingum, G.D., Robert, B., et al. (1994) Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with al terations at alpha-Tyr-44 and alpha-Tyr-45. Biophysical Journal, 299, 695-700.
[15]  Gall, A., Fowler, G.J., Hunter, C.N., et al. (1997) Influ ence of the protein binding site on the absorption proper ties of the monomeric bacteriochlorophyll in Rhodobacter sphaeroides LH2 complex. Biochemistry, 51, 16282 16287. doi:10.1021/bi9717237
[16]  Braun, P., Vegh, A.P., von Jan, M., et al. (2003) Identifi cation of intramembrane hydrogen bonding between 13(1) ketogroup of bacteriochlorophyll and serine residue alpha27 in the LH2 light-harvesting complex. Biochim Biophys Acta, 1, 19-26.
[17]  Garcia-Martin, A., Kwa, L.G., Strohmann, B., et al. (2006) Structural role of (bacterio)chlorophyll ligated in the energetically unfavorable beta-position. Journal of Biological Chemistry, 15, 10626-10634. doi:10.1074/jbc.M510731200
[18]  Kwa, L.G., Garcia-Martin, A., Vegh, A.P., et al. (2004) Hydrogen bonding in a model bacteriochlorophyll-binding site drives assembly of light harvesting complex. Journal of Biological Chemistry, 15, 15067-15075. doi:10.1074/jbc.M312429200
[19]  Olsen, J.D., Sockalingum, G.D., Robert, B., et al. (1994) Modification of a hydrogen bond to a bacteriochlorophyll a molecule in the light-harvesting 1 antenna of Rhodo bacter sphaeroides. Proceedings of the National Academy of Sciences of the USA, 15, 7124-7128. doi:10.1073/pnas.91.15.7124
[20]  Kimura, Y., Hirano, Y., Yu, L.J., et al. (2008) Calcium ions are involved in the unusual red shift of the light harvesting 1 Qy transition of the core complex in thermophilic purple sulfur bacterium Thermochromatium tepidum. Journal of Biological Chemistry, 20, 13867 13873. doi:10.1074/jbc.M800256200
[21]  Allen, J.P., Artz, K., Lin, X., et al. (1996) Effects of hydrogen bonding to a bacteriochlorophyll-bacteriopheo phytin dimer in reaction centers from Rhodobacter spha eroides. Biochemistry, 21, 6612-6619. doi:10.1021/bi9528311
[22]  Gall, A., Cogdell, R.J. and Robert, B. (2003) Influence of carotenoid molecules on the structure of the bacterio chlorophyll binding site in peripheral light-harvesting proteins from Rhodobacter sphaeroides. Biochemistry, 23, 7252-7258. doi:10.1021/bi0268293
[23]  Sundstrom, V. and Pullerits, T. (1999) Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. The Journal of Physical Chemistry, 13, 2327-2346. doi:10.1021/jp983722+
[24]  Wormit, M., Harbach, P.H., Mewes, J.M., et al. (2009) Excitation energy transfer and carotenoid radical cation formation in light harvesting complexes—A theoretical perspective. Biochimica et Biophysica Acta, 6, 738-746.
[25]  Moskalenko, A.A., Makhneva, Z.K., Fiedor, L., et al. (2005) Effects of carotenoid inhibition on the photosyn thetic RC-LH1 complex in purple sulphur bacterium Thiorhodospira sibirica. Photosynthesis Research, 1-2, 71 80. doi:10.1007/s11120-005-4473-9
[26]  Garcia-Martin, A., Pazur, A., Wilhelm, B., et al. (2008) The role of aromatic phenylalanine residues in binding carotenoid to light-harvesting model and wild-type com plexes. Journal of Molecular Biology, 1, 154-166. doi:10.1016/j.jmb.2008.07.002
[27]  Hu, Z., Zhao, Z., Pan, Y., et al. (2010) A powerful hybrid pucoperon promoter tightly regulated by both IPTG and low oxygen level. Biochemistry, 4, 519-512.
[28]  Zhao, Z., Hu, Z., Liang, Y., et al. (2010) One-step purifi cation of functional light-harvesting 2 complex from Rhodobacter sphaeroides. Protein & Peptide Letters, 4, 444-448. doi:10.2174/092986610790963663
[29]  Zhao, Z., Hu, Z., Nie, X., et al. (2011) A novel Rhodo bacter sphaeroides expression system for real-time eva luation of heterologous protein expression levels. Protein & Peptide Letters, 6, 568-572. doi:10.2174/092986611795222722
[30]  Hunter, C.N. and Turner, G. (1988) Transfer of genes coding for apoproteins of reaction center and light-har vesting LH1 complexes to Rhodobacter sphearoides. Journal of General Microbiology, 6, 1471-1480.
[31]  Clayton, R.K. and Clayton, B.J. (1981) B850 pigment protein complex of Rhodopseudomonas sphaeroides: Ex tinction coefficients, circular dichroism, and the reverseble binding of bacteriochlorophyll. Proceedings of the National Academy of Sciences of the USA, 9, 5583-5587. doi:10.1073/pnas.78.9.5583
[32]  Bailey, S. and Grossman, A. (2008) Photoprotection in cyanobacteria: Regulation of light harvesting. Photoche mistry and Photobiology, 6, 1410-1420. doi:10.1111/j.1751-1097.2008.00453.x
[33]  DeGrado, W.F., Gratkowski, H. and Lear, J.D. (2003) How do helix-helix interactions help determine the folds of membrane proteins? Perspectives from the study of homo-oligomeric helical bundles. Protein Science, 4, 647 665. doi:10.1110/ps.0236503
[34]  Uyeda, G., Williams, J.C., Roman, M., et al. (2010) The influence of hydrogen bonds on the electronic structure of light-harvesting complexes from photosynthetic bacteria. Biochemistry, 6, 1146-1159. doi:10.1021/bi901247h
[35]  Gratkowski, H., Lear, J.D. and DeGrado, W.F. (2001) Polar side chains drive the association of model trans membrane peptides. Proceedings of the National Academy of Sciences of the USA, 3, 880-885. doi:10.1073/pnas.98.3.880


comments powered by Disqus