All Title Author
Keywords Abstract


Coercivity Values Enhancement by Incorporation of Magnetic Powders in Inorganic Matrix Hosts

DOI: 10.4236/njgc.2013.31001, PP. 1-5

Keywords: Magnetic Material, Nanocomposite, Xerogels, Polyaniline

Full-Text   Cite this paper   Add to My Lib

Abstract:

Enhancement in coercivity values of precursor powders of cobalt ferrite embedded in silica xerogel as well as polyaniline was observed using vibrating sample magnetometry. We compared the magnetic properties of pure precursor powders of ferrite cobalt prepared by coprecipitation method and those embedded in xerogel and polyaniline matrix, prepared by sol-gel and by a conventional in situ chemical oxidation polymerization, respectively. The main magnetic effect is the altered coercivity value growing two magnitude orders for the precursor powders of cobalt ferrite embedded in silica xerogel and in polyaniline. The value goes from 52 Oe to 2200 Oe and 1054 Oe for pure coprecipitated precursor powder and embedded in silica xerogel, and embedded in polyaniline, respectively, without any heat-treatment.

References

[1]  C. L. Chien, “Magnetism and Giant Magneto-Transport Properties in Granular Solids,” Annual Review of Materials Science, Vol. 25, 1995, pp. 129-160. doi:10.1146/annurev.ms.25.080195.001021
[2]  G. Xiao, S. Liou, A. Levy, J. Taylos and C. L. Chien, “Magnetic Relaxation in Fe-(SiO2) Granular Films,” Physical Review B, Vol. 34, No. 11, 1986, pp. 7573-7577. doi:10.1103/PhysRevB.34.7573
[3]  C. Estournes, T. Lutz, J. Happich, T. Quaranta, P. Wissler, J. Guill, “Nickel nanoparticles in Silica Gel: Preparation and Magnetic Properties,” Journal of Magnetism and Magnetic Materials, Vol. 173, No. 1-2, 1997, pp. 83-92. doi:10.1016/S0304-8853(97)00144-3.
[4]  L. Zhang, G. C. Papaefthymiou, R. F. Ziolo and J. Y. Ying, “Novel γ-Fe2O3/SiO2 Magnetic Nanocomposites via Sol-Gel Matrix-Mediated Synthesis,” Nanostructured Materials, Vol. 9, No. 1-8, 1997, pp. 185-188. doi:10.1016/S0965-9773(97)00049-4.
[5]  S. Ponce-Casta?eda, J. R. Martínez, F. Ruiz, S. A. Palomares-Sánchez and J. A. Matutes-Aquino, “Magnetic Properties Enhancement of M-Ba Ferrites Embedded in a SiO2 Matrix,” Journal of Magnetism and Magnetic Materials, Vol. 250, 2002, pp. 160-163. doi:10.1016/S0304-8853(02)00374-8
[6]  J. R. Martínez, J. A. de la Cruz-Mendoza, S. A. Palomares-Sánchez, G. Vázquez-García, G. Ortega-Zarzosa and F. Ruiz, “Grain Size Reduction Effect of Barium Titanate Embedded in Silica Xerogel,” Materials Letters, Vol. 62, No. 17-18, 2008, pp. 2947-2949. doi:10.1016/j.matlet.2008.01.081
[7]  J. R. Ellis, “Competing Materials to Intrinsically Conducting Poltmers and Their Applications” In: T. A. Skotheim, Ed., Handbook of Conducting Polymers, Marcel Dekker, New York, 1986, pp. 501-505.
[8]  J. Alam, U. Riaz and S. Ahmad, “Effect of Ferrofluid Concentration on Electrical and Magnetic Properties of the Fe3O4/PANI Nanocomposites,” Journal of Magnetism and Magnetic Materials, Vol. 314, No. 2, 2007, pp. 93-99. doi:10.1016/j.jmmm.2007.02.195
[9]  K. H. J. Buschow, “Magnetic Superconductor Materials,” 2nd Edition, Elsevier, Amsterdam, 2005.
[10]  S. A. Palomares-Sánchez, S. Ponce-Casta?eda, J. R. Martínez, Y. M. Chumakov, F. Leccabue, B. E. Watts and R. Salazar-Ortiz, “Structural Analysis of Barium Hexaferrite Embedded in an Amorphous Matrix,” Materials Letters, Vol. 60, No. 8, 2006, pp. 1076-1079. doi:10.1016/j.matlet.2005.10.112
[11]  S. Peng, J. F. Hu, H. W. Qin, et al., “Preparation and Magnetic Properties of M-Sr Ferrites Embedded in a SiO2 Matrix,” Rare Metal Materials and Engineering, Vol. 34, No. 7, 2005, 1151-1153.
[12]  J. Jiang, L.-H. Ai, D.-B. Qin, H. Liu, and L.-C. Li, “Preparation and Characterization of Electromagnetic Functionalized Polyaniline/BaFe12O19 Composites,” Synthetic Metals, Vol. 159, No. 7-8, 2009, pp. 695-699. doi:10.1016/j.synthmet.2008.12.021
[13]  J. Jiang, L. Li, F. Xu, “In Situ Synthesis and Characterization of LiNi0.5La0.08Fe1.92O4—Polyaniline Core—Shell Nanocomposites,” Journal of Physics and Chemistry of Solids, Vol. 68, No. 9, 2007, pp. 1656-1662. doi:10.1016/j.jpcs.2007.04.007
[14]  X. Battle and A. Labarta, “Finite-Size Effects in Fine Particles: Magnetic and Transport Properties,” Journal of Physics D: Applied Physics, Vol. 35, No. 6, 2002, pp. R15. doi:10.1088/0022-3727/35/6/201
[15]  W. Luo, S. R. Nagel, T. F. Rosenbaum and R. E. Rosenweig, “Dipole Interactions with Random Anisotropy in a Frozen Ferrofluid,” Physical Review Letters, Vol. 67, No. 19, 1991, pp. 2721-2724. doi:10.1103/PhysRevLett.67.2721
[16]  F. Itoh and M. Satou, “Finite-Size Effects in Fine Particles: Magnetic and Transport Properties,” Japanese Journal of Applied Physics, Vol. 14, 1975, pp. 2091-2092. doi:10.1143/JJAP.14.2091
[17]  F. E. Spada, F. T. Parker, C. Y. Nakakura and A. E. Berkowitz, “Studies of Anisotropy Mechanisms in Polyphosphate-Treated Magnetic Iron Oxide Particles,” Journal of Magnetism and Magnetic Materials, Vol. 120, No. 1-3, 1993, pp. 129-135. doi:10.1016/0304-8853(93)91304-P
[18]  F. E. Spada, F. T. Parker, A. E. Berkowitz and T. J. Cox, “HK Distributions and HC Calculations for Magnetic Recording Particles,” Journal of Applied Physics, Vol. 75, No. 3, 1994, pp. 5562-5570. doi:10.1063/1.355689
[19]  H. N. Bertram and A. Bhatia, “The Effect of Interactions on the Saturation Remanence of Particulate Assemblies,” IEEE Transactions on Magnetics, Vol. 9, No. 2, 1973, pp. 127-133. doi:10.1109/TMAG.1973.1067574
[20]  M. P. Morales, M. J. Mu?oz-Aguado, J. L. García-Palacios, F. J. Lázaro and C. J. Serna, “Coercivity Enhancement in γ-Fe2O3 Particles Dispersed at Low-Volume Fraction,” Journal of Magnetism and Magnetic Materials , Vol. 183, No. 1-2, 1998, pp. 232-240. doi:10.1016/S0304-8853(97)01061-5
[21]  F. T. Parker, A. E. Barkowitz and S. B. Slade, “Hc Enhancement of Co-Adsorbed γ-Fe2O3 Particles via Surface Treatment with Sodium Polyphosphate,” Journal of Applied Physics, Vol. 75, No. 10, 1994, pp. 1681-1683. doi:10.1063/1.356354

Full-Text

comments powered by Disqus