All Title Author
Keywords Abstract

Effect of Sub-Grains and Crystal Defects on Monolike Si Solar Cell Performance

DOI: 10.4236/msa.2013.42011, PP. 103-108

Keywords: Monolike, Defects, Grain Orientation, Cell Efficiency

Full-Text   Cite this paper   Add to My Lib


This paper investigates crystalline orientation in monolike silicon wafers and its effect on solar cell performance. Monolike silicon wafers from two different bricks cut from interior and corner region of an ingot were compared. The mono grain in the interior brick is nearly perfect, but there are some large oblong shaped sub-grains in the corner brick. The large sub-grains at corner brick wafers are oriented at (311), instead of (100) orientation. The (311) grains contain high density of dislocation and cannot be effectively textured by alkaline solution, therefore lowering the cell efficiency significantly. There is about 0.86% (abs) cell efficiency reduction on the monolike cells that contain large sub-grains.


[1]  N. Stoddard, R. Sidhu, J. Creager, S. Dey, B. Kinsey, L. Maisano, C. Phillips, R. Clark and J. Zahler, “Evaluating BP Solar’s MONO Materials: Lifetime and Cell Electrical Data,” Proceedings of 34th IEEE Photovoltaic Specialists Conference, Philadelphia, 2009, pp. 1502-1507.
[2]  K. Petter, T. Kaden, R. Bakowskie, Y. Ludwig, R. Lantzsch, D. Raschke, S. Rupp and T. Spiess, “Analysis of Mono-cast Silicon Wafer and Solar Cells,” 27th EU, Pittsburgh Veterinary Specialty & Emergency Center, Frankfort, 2012, pp. 984-989.
[3]  B. Rounsaville, I. B. Cooper, K. Tate, M. Kadish, A. Das and A. Rohatgi, “Analysis of Cast Mono-crystalline Ingot Characteristics with Applications to Solar Cells,” 38th IEEE Passaic Valley Sewerage Commission, Austin, 2012, pp. 3009-3014.
[4]  B. Sun, J. Sheng, S. Yuan, C. Zhang, Z. Feng and Q. Huang, “Industrially Feasible Casting-mono Crystalline Solar Cells with PECVD AlOx/SiNx Rear Passivation Stack towards 19.6% Efficiency,” 38th IEEE Passaic Valley Sewerage Commission, Austin, 2012, pp. 1125 1128.
[5]  F. Jay, D. Mu?oz, N. Enjalbert, G. D’Alonzo, J. Stendera, S. Dubois, D. Ponthenier, A. Jouini and P. J. Ribeyron, “20.2% Efficiency with A-Si:H/C-Si Heterojunction Solar Cells on Mono-like Substrate,” 27th EU, Pittsburgh Veterinary Specialty & Emergency Center, Frankfort, 2012, pp. 652-654.
[6]  X. Gu, X. Yu, K. Guo, L. Chen, D. Wang and D. Yang, “Seed-Assisted Cast Quasi-Single Crystalline Silicon for Photovoltaic Application: Towards High Efficiency and Low Cost Silicon Solar Cells,” Solar Energy Materials & Solar Cells, Vol. 101, 2012, pp. 95-101. doi:10.1016/j.solmat.2012.02.024
[7]  C. Yang, Y. Pyekh and S. Danyluk, “Surface Potential Imaging of PV Cells with a Kelvin Probe,” Solar Energy Materials & Solar Cells, Vol. 102, 2012, pp. 167-172. doi:10.1016/j.solmat.2012.03.006
[8]  P. A. Basore and D. A. Clugston, “PC1D,” Version 5.6, University of New South Wales, Sydney, 1998.
[9]  K. H. Yang, “An Etch for Delineation of Defects in Silicon,” Journal of the Electrochemical Society, Vol. 13, 1984, pp. 1140-1145. doi:10.1149/1.2115767
[10]  T. F. Li, H. C. Huang, H. W. Tsai, A. Lan, C. Chuck and C. W. Lan, “An Enhanced Cooling Design in directional Solidification for High Quality Multi-Crystalline Solar Silicon,” Journal of Crystal Growth, Vol. 340, No. 1, 2012, pp. 202-208. doi:10.1016/j.jcrysgro.2011.12.045
[11]  K. Fujiwara, “Crystal Growth Behaviors of Silicon during Melt Growth Processes,” International Journal of Photoenergy, Vol. 2012, 2012, p. 169829. doi:10.1155/2012/169829
[12]  K. E. Petersen, “Silicon as a Mechanical Material,” Proc. of the IEEE, Vol. 70, No. 5, 1982, pp. 420-457. doi:10.1109/PROC.1982.12331
[13]  S. Patzig-Klein, E. Wefringhaus, C. Klein, W. Benko, F. Delahaye, S. Quei?er, J. Schweckendiek and H. Nussbaumer, “Overview of Wet Chemical Texturing Processes for ‘Cast-Mono’ Silicon Materials,” 27th EU, Pittsburgh Veterinary Specialty & Emergency Center, Frankfort, 2012, pp. 766-771.


comments powered by Disqus

Contact Us


微信:OALib Journal