All Title Author
Keywords Abstract

Liposomal Antioxidants for Protection against Oxidant-Induced Damage

DOI: 10.1155/2011/152474

Full-Text   Cite this paper   Add to My Lib


Reactive oxygen species (ROS), including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress. 1. Introduction Oxidative stress (OS) is defined as an imbalance between the production of reactive oxygen species and antioxidant defenses that can lead to cellular and tissue damage [1–8]. A potential pharmacological strategy in preventing or treating oxidant-induced cellular and tissue damage involves the use of appropriate antioxidants. Antioxidants are substances which are able to prevent, delay, or remove oxidative damage to a molecule [4, 9–11]. Yet, their efficacy is hindered with challenges such as poor solubility, inability to cross cell-membrane barriers, extensive first-pass metabolism, and rapid clearance of antioxidants from cells [12, 13]. To improve the pharmacological and pharmacokinetic properties of antioxidants, diverse systems such as antioxidant chemical modifications and coupling to affinity carriers, micelles, and liposomes are being developed [4, 13–18]. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of several pathological conditions linked to oxidative stress. Liposomes are artificial vesicles consisting of an aqueous core enclosed in one or more


[1]  D. Ziech, R. Franco, A. G. Georgakilas et al., “The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development,” Chemico-Biological Interactions, vol. 188, no. 2, pp. 334–339, 2010.
[2]  P. A. Ward, “Oxidative stress: acute and progressive lung injury,” Annals of the New York Academy of Sciences, vol. 1203, pp. 53–59, 2010.
[3]  E. Hopps, D. Noto, G. Caimi, and M. R. Averna, “A novel component of the metabolic syndrome: the oxidative stress,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 20, no. 1, pp. 72–77, 2010.
[4]  Z. E. Suntres, “Role of antioxidants in paraquat toxicity,” Toxicology, vol. 180, no. 1, pp. 65–77, 2002.
[5]  K. A. Jellinger, “Basic mechanisms of neurodegeneration: a critical update,” Journal of Cellular and Molecular Medicine, vol. 14, no. 3, pp. 457–487, 2010.
[6]  M. Keel and O. Trentz, “Pathophysiology of polytrauma,” Injury, vol. 36, no. 6, pp. 691–709, 2005.
[7]  C. M. Bergamini, S. Gambetti, A. Dondi, and C. Cervellati, “Oxygen, reactive oxygen species and tissue damage,” Current Pharmaceutical Design, vol. 10, no. 14, pp. 1611–1626, 2004.
[8]  J. M. McCord, “The evolution of free radicals and oxidative stress,” American Journal of Medicine, vol. 108, no. 8, pp. 652–659, 2000.
[9]  I. F. F. Benzie, “Evolution of antioxidant defence mechanisms,” European Journal of Nutrition, vol. 39, no. 2, pp. 53–61, 2000.
[10]  P. Evans and B. Halliwell, “Micronutrients: oxidant/antioxidant status,” British Journal of Nutrition, vol. 85, no. 2, pp. S67–S74, 2001.
[11]  H. Sies, “Oxidative stress: oxidants and antioxidants,” Experimental Physiology, vol. 82, no. 2, pp. 291–295, 1997.
[12]  S. R. Steinhubl, “Why have antioxidants failed in clinical trials?” American Journal of Cardiology, vol. 101, no. 10, pp. S14–S19, 2008.
[13]  D. V. Ratnam, D. D. Ankola, V. Bhardwaj, D. K. Sahana, and M. N. V. R. Kumar, “Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective,” Journal of Controlled Release, vol. 113, no. 3, pp. 189–207, 2006.
[14]  W. L. Stone and M. Smith, “Therapeutic uses of antioxidant liposomes,” Applied Biochemistry and Biotechnology, vol. 27, no. 3, pp. 217–230, 2004.
[15]  V. R. Muzykantov, “Targeting of superoxide dismutase and catalase to vascular endothelium,” Journal of Controlled Release, vol. 71, no. 1, pp. 1–21, 2001.
[16]  V. R. Muzykantov, “Delivery of antioxidant enzyme proteins to the lung,” Antioxidants and Redox Signaling, vol. 3, no. 1, pp. 39–62, 2001.
[17]  R. Carnemolla, V. V. Shuvaev, and V. R. Muzykantov, “Targeting antioxidant and antithrombotic biotherapeutics to endothelium,” Seminars in Thrombosis and Hemostasis, vol. 36, no. 3, pp. 332–342, 2010.
[18]  S. Beg, S. Javed, and K. Kohli, “Bioavailability enhancement of coenzyme q10: an extensive review of patents,” Recent Patents on Drug Delivery and Formulation, vol. 4, no. 3, pp. 245–255, 2010.
[19]  F. Schuber, A. Kichler, C. Boeckler, and B. Frisch, “Liposomes: from membrane models to gene therapy,” Pure and Applied Chemistry, vol. 70, no. 1, pp. 89–96, 1998.
[20]  A. Samad, Y. Sultana, and M. Aqil, “Liposomal drug delivery systems: an update review,” Current Drug Delivery, vol. 4, no. 4, pp. 297–305, 2007.
[21]  D. S. Pisal, M. P. Kosloski, and S. V. Balu-Iyer, “Delivery of therapeutic proteins,” Journal of Pharmaceutical Sciences, vol. 99, no. 6, pp. 2557–2575, 2010.
[22]  G. Stark, “Functional consequences of oxidative membrane damage,” Journal of Membrane Biology, vol. 205, no. 1, pp. 1–16, 2005.
[23]  M. Comporti, “Three models of free radical-induced cell injury,” Chemico-Biological Interactions, vol. 72, no. 1-2, pp. 1–56, 1989.
[24]  A. Azzi, “Oxidative stress: a dead end or a laboratory hypothesis?” Biochemical and Biophysical Research Communications, vol. 362, no. 2, pp. 230–232, 2007.
[25]  Z. ?ura?ková, “Some current insights into oxidative stress,” Physiological Research, vol. 59, no. 4, pp. 459–469, 2010.
[26]  V. B. Djordjevic, “Free radicals in cell biology,” in International Review of Cytology, W. J. Kwang, Ed., pp. 57–89, Academic Press, New York, NY, USA, 2004.
[27]  A. L. A. Ferreira, L. S. Matsubara, and B. B. Matsubara, “Anthracycline-induced cardiotoxicity,” Cardiovascular and Hematological Agents in Medicinal Chemistry, vol. 6, no. 4, pp. 278–281, 2008.
[28]  F. Di Virgilio, “New pathways for reactive oxygen species generation in inflammation and potential novel pharmacological targets,” Current Pharmaceutical Design, vol. 10, no. 14, pp. 1647–1652, 2004.
[29]  H. J. Forman and M. Torres, “Signaling by the respiratory burst in macrophages,” IUBMB Life, vol. 51, no. 6, pp. 365–371, 2001.
[30]  W. Dr?ge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002.
[31]  G. Ferrer-Sueta and R. Radi, “Chemical biology of peroxynitrite: kinetics, diffusion, and radicals,” ACS Chemical Biology, vol. 4, no. 3, pp. 161–177, 2009.
[32]  M. L. Circu and T. Y. Aw, “Reactive oxygen species, cellular redox systems, and apoptosis,” Free Radical Biology and Medicine, vol. 48, no. 6, pp. 749–762, 2010.
[33]  K. T. Turpaev, “Reactive oxygen species and regulation of gene expression,” Biochemistry, vol. 67, no. 3, pp. 281–292, 2002.
[34]  C. C. Winterbourn and M. B. Hampton, “Thiol chemistry and specificity in redox signaling,” Free Radical Biology and Medicine, vol. 45, no. 5, pp. 549–561, 2008.
[35]  M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007.
[36]  B. Harwell, “Biochemistry of oxidative stress,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1147–1150, 2007.
[37]  J. Nordberg and E. S. J. Arnér, “Reactive oxygen species, antioxidants, and the mammalian thioredoxin system,” Free Radical Biology and Medicine, vol. 31, no. 11, pp. 1287–1312, 2001.
[38]  Y. Manevich and A. B. Fisher, “Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism,” Free Radical Biology and Medicine, vol. 38, no. 11, pp. 1422–1432, 2005.
[39]  I. N. Zelko, T. J. Mariani, and R. J. Folz, “Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression,” Free Radical Biology and Medicine, vol. 33, no. 3, pp. 337–349, 2002.
[40]  Y. Wang, S. I. Feinstein, and A. B. Fisher, “Peroxiredoxin 6 as an antioxidant enzyme: protection of lung alveolar epithelial type II cells from -induced oxidative stress,” Journal of Cellular Biochemistry, vol. 104, no. 4, pp. 1274–1285, 2008.
[41]  C. K. Chow, “Biological functions and metabolic fate of vitamin E revisited,” Journal of Biomedical Science, vol. 11, no. 3, pp. 295–302, 2004.
[42]  M. G. Traber and J. Atkinson, “Vitamin E, antioxidant and nothing more,” Free Radical Biology and Medicine, vol. 43, no. 1, pp. 4–15, 2007.
[43]  M. E. Anderson and J. L. I. Luo, “Glutathione therapy: from prodrugs to genes,” Seminars in Liver Disease, vol. 18, no. 4, pp. 415–424, 1998.
[44]  M. C. Fotia and R. Amorati, “Non-phenolic radical-trapping antioxidants,” Journal of Pharmacy and Pharmacology, vol. 61, no. 11, pp. 1435–1448, 2009.
[45]  J. S. Bains and C. A. Shaw, “Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death,” Brain Research Reviews, vol. 25, no. 3, pp. 335–358, 1997.
[46]  S. A. R. Paiva, R. M. Russell, and S. K. Dutta, “β-carotene and other carotenoids as antioxidants,” Journal of the American College of Nutrition, vol. 18, no. 5, pp. 426–433, 1999.
[47]  N. I. Krinsky and E. J. Johnson, “Carotenoid actions and their relation to health and disease,” Molecular Aspects of Medicine, vol. 26, no. 6, pp. 459–516, 2005.
[48]  K. D. Croft, “The chemistry and biological effects of flavonoids and phenolic acids,” Annals of the New York Academy of Sciences, vol. 854, pp. 435–442, 1998.
[49]  D. Nakae, H. Yoshiji, K. Yamamoto et al., “Influence of timing of administration of liposome-encapsulated superoxide dismutase on its prevention of acetaminophen-induced liver cell necrosis in rats,” Acta Pathologica Japonica, vol. 40, no. 8, pp. 568–573, 1990.
[50]  M. L. Corvo, O. C. Boerman, W. J. G. Oyen et al., “Intravenous administration of superoxide dismutase entrapped in long circulating liposomesII. In vivo fate in a rat model of adjuvant arthritis,” Biochimica et Biophysica Acta, vol. 1419, no. 2, pp. 325–334, 1999.
[51]  S. Delanian, “Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide dismutase: clinical trial,” Radiotherapy and Oncology, vol. 32, no. 1, pp. 12–20, 1994.
[52]  F. Baillet, M. Housset, A. M. Michelson, and K. Puget, “Treatment of radiofibrosis with liposomal superoxide dismutase. Preliminary results of 50 cases,” Free Radical Research Communications, vol. 1, no. 6, pp. 387–394, 1986.
[53]  P. H. Chan, S. Longar, and R. A. Fishman, “Protective effects of liposome-entrapped superoxide dismutase on posttraumatic brain edema,” Annals of Neurology, vol. 21, no. 6, pp. 540–547, 1987.
[54]  S. Imaizumi, V. Woolworth, R. A. Fishman, and P. H. Chan, “Liposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats,” Stroke, vol. 21, no. 9, pp. 1312–1317, 1990.
[55]  S. Imaizumi, V. Woolworth, H. Kinouchi, S. F. Chen, R. A. Fishman, and P. H. Chan, “Liposome-entrapped superoxide dismutase ameliorates infarct volume in focal cerebral ischaemia,” Acta Neurochirurgica, Supplement, vol. 51, pp. 236–238, 1990.
[56]  M. Petelin, Z. Pavlica, T. Ivanu?a, M. ?entjurc, and U. Skaleri?, “Local delivery of liposome-encapsulated superoxide dismutase and catalase suppress periodontal inflammation in beagles,” Journal of Clinical Periodontology, vol. 27, no. 12, pp. 918–925, 2000.
[57]  B. A. Freeman, J. F. Turrens, and Z. Mirza, “Modulation of oxidant lung injury by using liposome-entrapped superoxide dismutase and catalase,” Federation Proceedings, vol. 44, no. 10, pp. 2591–2595, 1985.
[58]  J. F. Turrens, J. D. Crapo, and B. A. Freeman, “Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase,” The Journal of Clinical Investigation, vol. 73, no. 1, pp. 87–95, 1984.
[59]  M. L. Barnard, R. R. Baker, and S. Matalon, “Mitigation of oxidant injury to lung microvasculature by intratracheal instillation of antioxidant enzymes,” American Journal of Physiology, vol. 265, no. 4, part 1, pp. L340–L345, 1993.
[60]  R. V. Padmanabhan, R. Gudapaty, and I. E. Liener, “Protection against pulmonary oxygen toxicity in rats by the intratracheal administration of liposome-encapsulated superoxide dismutase or catalase,” American Review of Respiratory Disease, vol. 132, no. 1, pp. 164–167, 1985.
[61]  F. J. Walther, R. David-Cu, and S. L. Lopez, “Antioxidant-surfactant liposomes mitigate hyperoxic lung injury in premature rabbits,” American Journal of Physiology, vol. 269, no. 5, part 1, pp. L613–L617, 1995.
[62]  A. Ledwozyw, “Protective effect of liposome-entrapped superoxide dismutase and catalase on bleomycin-induced lung injury in rats. I. Antioxidant enzyme activities and lipid peroxidation,” Acta Veterinaria Hungarica, vol. 39, no. 3-4, pp. 215–224, 1991.
[63]  A. Ledwozyw, “Protective effect of liposome-entrapped superoxide dismutase and catalase on bleomycin-induced lung injury in rats. II. Phospholipids of the lung surfactant,” Acta Physiologica Hungarica, vol. 78, no. 2, pp. 157–162, 1991.
[64]  S. D. McClintock, L. M. Hoesel, S. K. Das et al., “Attenuation of half sulfur mustard gas-induced acute lung injury in rats,” Journal of Applied Toxicology, vol. 26, no. 2, pp. 126–131, 2006.
[65]  D. W. Thibeault, M. Rezaiekhaligh, S. Mabry, and T. Beringer, “Prevention of chronic pulmonary oxygen toxicity in young rats with liposome-encapsulated catalase administered intratracheally,” Pediatric Pulmonology, vol. 11, no. 4, pp. 318–327, 1991.
[66]  M. Rosenblat, N. Volkova, R. Coleman, and M. Aviram, “Anti-oxidant and anti-atherogenic properties of liposomal glutathione: studies in vitro, and in the atherosclerotic apolipoprotein E-deficient mice,” Atherosclerosis, vol. 195, no. 2, pp. e61–e68, 2007.
[67]  A. Wendel, H. Jaeschke, and M. Gloger, “Drug-induced lipid peroxidation in mice—II. Protection against paracetamol-induced liver necrosis by intravenous liposomally entrapped glutathione,” Biochemical Pharmacology, vol. 31, no. 22, pp. 3601–3605, 1982.
[68]  R. W. I. Cooke and J. A. Drury, “Reduction of oxidative stress marker in lung fluid of preterm infants after administration of intra-tracheal liposomal glutathione,” Biology of the Neonate, vol. 87, no. 3, pp. 178–180, 2005.
[69]  G. D. Zeevalk, L. P. Bernard, and F. T. Guilford, “Liposomal-glutathione provides maintenance of intracellular glutathione and neuroprotection in mesencephalic neuronal cells,” Neurochemical Research, vol. 35, no. 10, pp. 1575–1587, 2010.
[70]  L. M. Hoesel, M. A. Flierl, A. D. Niederbichler et al., “Ability of antioxidant liposomes to prevent acute and progressive pulmonary injury,” Antioxidants and Redox Signaling, vol. 10, no. 5, pp. 973–981, 2008.
[71]  Z. E. Suntres and P. N. Shek, “Alleviation of paraquat-induced lung injury by pretreatment with bifunctional liposomes containing -tocopherol and glutathione,” Biochemical Pharmacology, vol. 52, no. 10, pp. 1515–1520, 1996.
[72]  J. Fan, P. N. Shek, Z. E. Suntres, Y. H. Li, G. D. Oreopoulos, and O. D. Rotstein, “Liposomal antioxidants provide prolonged protection against acute respiratory distress syndrome,” Surgery, vol. 128, no. 2, pp. 332–338, 2000.
[73]  L. Khairy, G. E. Isom, and D. O. Kildsig, “Reversal of acetaminophen intoxication with an N-acetylcysteine-liposome preparation,” Research Communications in Chemical Pathology and Pharmacology, vol. 42, no. 1, pp. 153–156, 1983.
[74]  Z. E. Suntres and P. N. Shek, “Prophylaxis against lipopolysaccharide-induced acute lung injury by α- tocopherol liposomes,” Critical Care Medicine, vol. 26, no. 4, pp. 723–729, 1998.
[75]  Z. E. Suntres and P. N. Shek, “Treatment of LPS-induced tissue injury: role of liposomal antioxidants,” Shock, vol. 6, no. 6, pp. S57–S64, 1996.
[76]  Z. E. Suntres and P. N. Shek, “Protective effect of liposomal alpha-tocopherol against bleomycin-induced lung injury,” Biomedical and Environmental Sciences, vol. 10, supplement 1, pp. 47–59, 1997.
[77]  Z. E. Suntres and P. N. Shek, “Liposomal α-tocopherol alleviates the progression of paraquat-induced lung damage,” Journal of Drug Targeting, vol. 2, no. 6, pp. 493–500, 1995.
[78]  Z. E. Suntres and P. N. Shek, “Prevention of phorbol myristate acetate-induced acute lung injury by α-tocopherol liposomes,” Journal of Drug Targeting, vol. 3, no. 3, pp. 201–208, 1995.
[79]  E. Wigenstam, D. Rocksn, B. Ekstrand-Hammarstrm, and A. Bucht, “Treatment with dexamethasone or liposome-encapsuled vitamin e provides beneficial effects after chemical-induced lung injury,” Inhalation Toxicology, vol. 21, no. 11, pp. 958–964, 2009.
[80]  J. Sinha, N. Das, and M. K. Basu, “Liposomal antioxidants in combating ischemia-reperfusion injury in rat brain,” Biomedicine and Pharmacotherapy, vol. 55, no. 5, pp. 264–271, 2001.
[81]  S. Mukhopadhyay, S. Mukherjee, B. K. Ray, A. Ray, W. L. Stone, and S. K. Das, “Antioxidant liposomes protect against CEES-induced lung injury by decreasing SAF-1/MAZ-mediated inflammation in the guinea pig lung,” Journal of Biochemical and Molecular Toxicology, vol. 24, no. 3, pp. 187–194, 2010.
[82]  A. Soloviev, A. Stefanov, A. Parshikov et al., “Arrhythmogenic peroxynitrite-induced alterations in mammalian heart contractility and its prevention with quercetin-filled liposomes,” Cardiovascular Toxicology, vol. 2, no. 2, pp. 129–139, 2002.
[83]  A. K. Mandal, S. Das, M. K. Basu, R. N. Chakrabarti, and N. Das, “Hepatoprotective activity of liposomal flavonoid against arsenite-induced liver fibrosis,” Journal of Pharmacology and Experimental Therapeutics, vol. 320, no. 3, pp. 994–1001, 2007.
[84]  W. C. Lee and T. H. Tsai, “Preparation and characterization of liposomal coenzyme Q10 for in vivo topical application,” International Journal of Pharmaceutics, vol. 395, no. 1-2, pp. 78–83, 2010.
[85]  M. Takahashi, S. Uechi, K. Takara, Y. Asikin, and K. Wada, “Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin,” Journal of Agricultural and Food Chemistry, vol. 57, no. 19, pp. 9141–9146, 2009.
[86]  P. J. Millea, “N-acetylcysteine: multiple clinical applications,” American Family Physician, vol. 80, no. 3, pp. 265–269, 2009.
[87]  R. S. Britton, K. L. Leicester, and B. R. Bacon, “Iron toxicity and chelation therapy,” International Journal of Hematology, vol. 76, no. 3, pp. 219–228, 2002.
[88]  A. R. Weseler and A. Bast, “Oxidative stress and vascular function: implications for pharmacologic treatments,” Current Hypertension Reports, vol. 12, no. 3, pp. 154–161, 2010.
[89]  S. Yamashita and Y. Matsuzawa, “Where are we with probucol: a new life for an old drug?” Atherosclerosis, vol. 207, no. 1, pp. 16–23, 2009.
[90]  G. M. D'Andrea, “Use of antioxidants during chemotherapy and radiotherapy should be avoided,” CA Cancer Journal for Clinicians, vol. 55, no. 5, pp. 319–321, 2005.
[91]  M. L. Nucci, J. Olejarczyk, and A. Abuchowski, “Immunogenicity of polyethylene glycol-modified superoxide dismutase and catalase,” Journal of Free Radicals in Biology and Medicine, vol. 2, no. 5-6, pp. 321–325, 1986.
[92]  A. Arslantas, “Development of functional models for a SOD,” Metal-Based Drugs, vol. 9, no. 1-2, pp. 9–18, 2002.
[93]  S. B. Lotito and B. Frei, “Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon?” Free Radical Biology and Medicine, vol. 41, no. 12, pp. 1727–1746, 2006.
[94]  M. Maiorino, A. Zamburlini, A. Roveri, and F. Ursini, “Prooxidant role of vitamin E in copper induced lipid peroxidation,” The FEBS Letters, vol. 330, no. 2, pp. 174–176, 1993.
[95]  Z. E. Suntres and E. M. K. Lui, “Age-related differences in iron-nitrilotriacetate hepatotoxicity in the guinea pig: role of copper metallothionein,” Journal of Pharmacology and Experimental Therapeutics, vol. 258, no. 3, pp. 797–806, 1991.
[96]  Z. E. Suntres and E. M. K. Lui, “Prooxidative effect of copper-metallothionein in the acute cytotoxicity of hydrogen peroxide in Ehrlich ascites tumour cells,” Toxicology, vol. 217, no. 2-3, pp. 155–168, 2006.
[97]  N. Abudu, J. J. Miller, M. Attaelmannan, and S. S. Levinson, “Vitamins in human arteriosclerosis with emphasis on vitamin C and vitamin E,” Clinica Chimica Acta, vol. 339, no. 1-2, pp. 11–25, 2004.
[98]  Z. Drulis-Kawa and A. Dorotkiewicz-Jach, “Liposomes as delivery systems for antibiotics,” International Journal of Pharmaceutics, vol. 387, no. 1-2, pp. 187–198, 2010.
[99]  P. Goyal, K. Goyal, S. G. V. Kumar, A. Singh, O. P. Katare, and D. N. Mishra, “Liposomal drug delivery systems—clinical applications,” Acta Pharmaceutica, vol. 55, no. 1, pp. 1–25, 2005.
[100]  N. A. Kshirsagar, S. K. Pandya, B. G. Kirodian, and S. Sanath, “Liposomal drug delivery system from laboratory to clinic,” Journal of Postgraduate Medicine, vol. 51, no. 5, supplement 1, pp. S5–S15, 2005.
[101]  D. A. Thomas, M. A. Myers, B. Wichert, H. Schreier, and R. J. Gonzalez-Rothi, “Acute effects of liposome aerosol inhalation on pulmonary function in healthy human volunteers,” Chest, vol. 99, no. 5, pp. 1268–1270, 1991.
[102]  H. G. Eichler, J. Senior, A. Stadler, S. Gasic, P. Pfundner, and G. Gregoriadis, “Kinetics and disposition of fluorescein-labelled liposomes in healthy human subjects,” European Journal of Clinical Pharmacology, vol. 34, no. 5, pp. 475–479, 1988.
[103]  G. Storm, H. P. Wilms, and D. J. A. Crommelin, “Liposomes and biotherapeutics,” Biotherapy, vol. 3, no. 1, pp. 25–42, 1991.
[104]  M. J. Parnham and H. Wetzig, “Toxicity screening of liposomes,” Chemistry and Physics of Lipids, vol. 64, no. 1–3, pp. 263–274, 1993.
[105]  P. Srinath, M. G. Chary, S. P. Vyas, and P. V. Diwan, “Long-circulating liposomes of indomethacin in arthritic rats—a biodisposition study,” Pharmaceutica Acta Helvetiae, vol. 74, no. 4, pp. 399–404, 2000.
[106]  L. Cattel, M. Ceruti, and F. Dosio, “From conventional to stealth liposomes a new frontier in cancer chemotherapy,” Tumori, vol. 89, no. 3, pp. 237–249, 2003.
[107]  T. Minko, A. Stefanov, and V. Pozharov, “Selected contribution: lung hypoxia: antioxidant and antiapoptotic effects of liposomal -tocopherol,” Journal of Applied Physiology, vol. 93, no. 4, pp. 1550–1560, 2002.
[108]  S. Mukherjee, W. L. Stone, H. Yang, M. G. Smith, and S. K. Das, “Protection of half sulfur mustard gas-induced lung injury in guinea pigs by antioxidant liposomes,” Journal of Biochemical and Molecular Toxicology, vol. 23, no. 2, pp. 143–153, 2009.
[109]  K. Niibori, H. Yokoyama, J. A. Crestanello, and G. J. R. Whitman, “Acute administration of liposomal coenzyme Q10 increases myocardial tissue levels and improves tolerance to ischemia reperfusion injury,” Journal of Surgical Research, vol. 79, no. 2, pp. 141–145, 1998.
[110]  H. Yokoyama, D. M. Lingle, J. A. Crestanello et al., “Coenzyme Q10 protects coronary endothelial function from ischemia reperfusion injury via an antioxidant effect,” Surgery, vol. 120, no. 2, pp. 189–196, 1996.
[111]  M. Alipour, A. Omri, M. G. Smith, and Z. E. Suntres, “Prophylactic effect of liposomal N-acetylcysteine against LPS-induced liver injuries,” Journal of Endotoxin Research, vol. 13, no. 5, pp. 297–304, 2007.
[112]  P. Mitsopoulos, A. Omri, M. Alipour, N. Vermeulen, M. G. Smith, and Z. E. Suntres, “Effectiveness of liposomal-N-acetylcysteine against LPS-induced lung injuries in rodents,” International Journal of Pharmaceutics, vol. 363, no. 1-2, pp. 106–111, 2008.
[113]  Z. P. Yuan, L. J. Chen, L. Y. Fan et al., “Liposomal quercetin efficiently suppresses growth of solid tumors in murine models,” Clinical Cancer Research, vol. 12, no. 10, pp. 3193–3199, 2006.
[114]  T. M. Allen, “Liposomal drug formulations: rationale for development and what we can expect for the future,” Drugs, vol. 56, no. 5, pp. 747–756, 1998.
[115]  G. Gregoriadis, “Overview of liposomes,” Journal of Antimicrobial Chemotherapy, vol. 28, supplement B, pp. 39–48, 1991.
[116]  V. P. Torchilin, “Recent approaches to intracellular delivery of drugs and DNA and organelle targeting,” Annual Review of Biomedical Engineering, vol. 8, pp. 343–375, 2006.
[117]  C. Regnault, M. Soursac, M. Roch-Arveiller, E. Postaire, and G. Hazebroucq, “Pharmacokinetics of superoxide dismutase in rats after oral administration,” Biopharmaceutics and Drug Disposition, vol. 17, no. 2, pp. 165–174, 1996.
[118]  T. Fujita, M. Nishikawa, C. Tamaki, Y. Takakura, M. Hashida, and H. Sezaki, “Targeted delivery of human recombinant superoxide dismutase by chemical modification with mono- and polysaccharide derivatives,” Journal of Pharmacology and Experimental Therapeutics, vol. 263, no. 3, pp. 971–978, 1992.
[119]  C. W. White, J. H. Jackson, A. Abuchowski et al., “Polyethylene glycol-attached antioxidant enzymes decrease pulmonary oxygen toxicity in rats,” Journal of Applied Physiology, vol. 66, no. 2, pp. 584–590, 1989.
[120]  G. Tang, J. E. White, R. J. Gordon, P. D. Lumb, and M. F. Tsan, “Polyethylene glycol-conjugated superoxide dismutase protects rats against oxygen toxicity,” Journal of Applied Physiology, vol. 74, no. 3, pp. 1425–1431, 1993.
[121]  J. S. Beckman, R. L. Minor Jr., and B. A. Freeman, “Augmentation of antioxidant enzymes in vascular endothelium,” Journal of Free Radicals in Biology and Medicine, vol. 2, no. 5-6, pp. 359–365, 1986.
[122]  V. V. Shuvaev, M. Christofidou-Solomidou, F. Bhora et al., “Targeted detoxification of selected reactive oxygen species in the vascular endothelium,” Journal of Pharmacology and Experimental Therapeutics, vol. 331, no. 2, pp. 404–411, 2009.
[123]  V. V. Shuvaev, J. Han, K. J. Yu et al., “PECAM-targeted delivery of SOD inhibits endothelial inflammatory response,” The FASEB Journal, vol. 25, no. 1, pp. 348–357, 2011.
[124]  V. V. Shuvaev, S. Tliba, M. Nakada, S. M. Albelda, and V. R. Muzykantov, “Platelet-endothelial cell adhesion molecule-1-directed endothelial targeting of superoxide dismutase alleviates oxidative stress caused by either extracellular or intracellular superoxide,” Journal of Pharmacology and Experimental Therapeutics, vol. 323, no. 2, pp. 450–457, 2007.
[125]  S. Muro and V. R. Muzykantov, “Targeting of antioxidant and anti-thrombotic drugs to endothelial cell adhesion molecules,” Current Pharmaceutical Design, vol. 11, no. 18, pp. 2383–2401, 2005.
[126]  J. W. Park, C. C. Benz, and F. J. Martin, “Future directions of liposome- and immunoliposome-based cancer therapeutics,” Seminars in Oncology, vol. 31, no. 6, supplement 13, pp. 196–205, 2004.
[127]  D. Papahadjopoulos, T. M. Allen, A. Gabizon et al., “Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 24, pp. 11460–11464, 1991.
[128]  M. Kaipel, A. Wagner, E. Wassermann et al., “Increased biological half-life of aerosolized liposomal recombinant human Cu/Zn superoxide dismutase in pigs,” Journal of Aerosol Medicine and Pulmonary Drug Delivery, vol. 21, no. 3, pp. 281–290, 2008.
[129]  T. T. Jubeh, S. Antler, S. Haupt, Y. Barenholz, and A. Rubinstein, “Local prevention of oxidative stress in the intestinal epithelium of the rat by adhesive liposomes of superoxide dismutase and tempamine,” Molecular Pharmaceutics, vol. 2, no. 1, pp. 2–11, 2005.
[130]  K. Vorauer-Uhl, E. Fürnschlief, A. Wagner, B. Ferko, and H. Katinger, “Topically applied liposome encapsulated superoxide dismutase reduces postburn wound size and edema formation,” European Journal of Pharmaceutical Sciences, vol. 14, no. 1, pp. 63–67, 2001.
[131]  R. Exne, B. Wessner, N. Manhart, and E. Roth, “Therapeutic potential of glutathione,” Wiener Klinische Wochenschrift, vol. 112, no. 14, pp. 610–616, 2000.
[132]  I. Grattagliano, P. Wieland, C. Schranz, and B. H. Lauterburg, “Effect of oral glutathione monoethyl ester and glutathione on circulating and hepatic sulfydrils in the rat,” Pharmacology and Toxicology, vol. 75, no. 6, pp. 343–347, 1994.
[133]  I. Grattagliano, P. Wieland, C. Schranz, and B. H. Lauterburg, “Disposition of glutathione monoethyl ester in the rat: glutathione ester is a slow release form of extracellular glutathione,” Journal of Pharmacology and Experimental Therapeutics, vol. 272, no. 2, pp. 484–488, 1995.
[134]  A. Witschi, S. Reddy, B. Stofer, and B. H. Lauterburg, “The systemic availability of oral glutathione,” European Journal of Clinical Pharmacology, vol. 43, no. 6, pp. 667–669, 1992.
[135]  Z. E. Suntres and P. N. Shek, “Incorporation of α-tocopherol in liposomes promotes the retention of liposome-encapsulated glutathione in the rat lung,” Journal of Pharmacy and Pharmacology, vol. 46, no. 1, pp. 23–28, 1994.
[136]  L. J. Smith, J. Anderson, and M. Shamsuddin, “Glutathione localization and distribution after intratracheal instillation: implications for treatment,” American Review of Respiratory Disease, vol. 145, no. 1, pp. 153–159, 1992.
[137]  A. Chonn and P. R. Cullis, “Recent advances in liposomal drug-delivery systems,” Current Opinion in Biotechnology, vol. 6, no. 6, pp. 698–708, 1995.
[138]  R. E. Pagano and J. N. Weinstein, “Interactions of liposomes with mammalian cells,” Annual Review of Biophysics and Bioengineering, vol. 7, pp. 435–468, 1978.
[139]  A. M. Sadowska, B. Manuel-y-Keenoy, and W. A. De Backer, “Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review,” Pulmonary Pharmacology and Therapeutics, vol. 20, no. 1, pp. 9–22, 2007.
[140]  K. R. Atkuri, J. J. Mantovani, L. A. Herzenberg, and L. A. Herzenberg, “N-Acetylcysteine-a safe antidote for cysteine/glutathione deficiency,” Current Opinion in Pharmacology, vol. 7, no. 4, pp. 355–359, 2007.
[141]  G. S. Kelly, “Clinical applications of N-acetylcysteine,” Alternative Medicine Review, vol. 3, no. 2, pp. 114–127, 1998.
[142]  M. C. G. van de Poll, C. H. C. Dejong, and P. B. Soeters, “Adequate range for sulfur-containing amino acids and biomarkers for their excess: lessons from enteral and parenteral nutrition,” Journal of Nutrition, vol. 136, no. 6, pp. 1694S–1700S, 2006.
[143]  F. Pajonk, K. Riess, A. Sommer, and W. H. McBride, “N-acetyl-L-cysteine inhibits 26S proteasome function: implications for effects on NF-κB activation,” Free Radical Biology and Medicine, vol. 32, no. 6, pp. 536–543, 2002.
[144]  M. Zafarullah, W. Q. Li, J. Sylvester, and M. Ahmad, “Molecular mechanisms of N-acetylcysteine actions,” Cellular and Molecular Life Sciences, vol. 60, no. 1, pp. 6–20, 2003.
[145]  S. Atis, A. Nayci, A. Ozge, U. Comelekoglu, S. Gunes, and O. Bagdatoglu, “N-acetylcysteine protects the rats against phrenic nerve dysfunction in sepsis,” Shock, vol. 25, no. 1, pp. 30–35, 2006.
[146]  M. Caglikulekci, M. Dirlik, C. Pata et al., “Effect of N-Acetylcysteine on blood and tissue lipid peroxidation in lipopolysaccharide-induced obstructive jaundice,” Journal of Investigative Surgery, vol. 19, no. 3, pp. 175–184, 2006.
[147]  B. G. Hsu, R. P. Lee, F. L. Yang, H. J. Harn, and H. I. Chen, “Post-treatment with N-acetylcysteine ameliorates endotoxin shock-induced organ damage in conscious rats,” Life Sciences, vol. 79, no. 21, pp. 2010–2016, 2006.
[148]  V. Smyrniotis, N. Arkadopoulos, G. Kostopanagiotou et al., “Attenuation of ischemic injury by N-acetylcysteine preconditioning of the liver,” Journal of Surgical Research, vol. 129, no. 1, pp. 31–37, 2005.
[149]  S. Fishbane, J. H. Durham, K. Marzo, and M. Rudnick, “N-acetylcysteine in the prevention of radiocontrast-induced nephropathy,” Journal of the American Society of Nephrology, vol. 15, no. 2, pp. 251–260, 2004.
[150]  A. Gillissen and D. Nowak, “Characterization of N-acetylcysteine and ambroxol in anti-oxidant therapy,” Respiratory Medicine, vol. 92, no. 4, pp. 609–623, 1998.
[151]  G. W. Burton, “Vitamin E: molecular and biological function,” Proceedings of the Nutrition Society, vol. 53, no. 2, pp. 251–262, 1994.
[152]  X. Wang and P. J. Quinn, “Vitamin E and its function in membranes,” Progress in Lipid Research, vol. 38, no. 4, pp. 309–336, 1999.
[153]  R. Meyer, A. F. P. Sonnen, and W. M. Nau, “Phase-dependent lateral diffusion of α-tocopherol in DPPC liposomes monitored by fluorescence quenching,” Langmuir, vol. 26, no. 18, pp. 14723–14729, 2010.
[154]  C. M. S. Cereda, G. R. Tófoli, R. B. De Brito Junior et al., “Stability and local toxicity evaluation of a liposomal prilocaine formulation,” Journal of Liposome Research, vol. 18, no. 4, pp. 329–339, 2008.
[155]  S. Urano, M. Kitahara, Y. Kato, Y. Hasegawa, and M. Matsuo, “Membrane stabilizing effect of vitamin E: existence of a hydrogen bond between α-tocopherol and phospholipids in bilayer liposomes,” Journal of Nutritional Science and Vitaminology, vol. 36, no. 6, pp. 513–519, 1990.
[156]  C. P. Verdon and J. B. Blumberg, “Influence of dietary vitamin E on the intermembrane transfer of α-tocopherol as mediated by an α-tocopherol binding protein,” Proceedings of the Society for Experimental Biology and Medicine, vol. 189, no. 1, pp. 52–60, 1988.
[157]  S. Banudevi, G. Krishnamoorthy, P. Venkataraman, C. Vignesh, M. M. Aruldhas, and J. Arunakaran, “Role of α-tocopherol on antioxidant status in liver, lung and kidney of PCB exposed male albino rats,” Food and Chemical Toxicology, vol. 44, no. 12, pp. 2040–2046, 2006.
[158]  A. A. Shvedova, E. R. Kisin, A. R. Murray et al., “Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice,” Toxicology and Applied Pharmacology, vol. 221, no. 3, pp. 339–348, 2007.
[159]  A. M. Terrasa, M. H. Guajardo, C. A. Marra, and G. Zapata, “α-Tocopherol protects against oxidative damage to lipids of the rod outer segments of the equine retina,” Veterinary Journal, vol. 182, no. 3, pp. 463–468, 2009.
[160]  Z. E. Suntres and P. N. Shek, “Intratracheally administered liposomal alpha-tocopherol protects the lung against long-term toxic effects of paraquat,” Biomedical and Environmental Sciences, vol. 8, no. 4, pp. 289–300, 1995.
[161]  L. J. Ramazzotto and R. Engstrom, “Dietary vitamin E and the effects of inhaled nitrogen dioxide on rat lungs,” Environmental Physiology & Biochemistry, vol. 5, no. 4, pp. 226–234, 1975.
[162]  H. M. Redetzki, C. D. Wood, and W. D. Grafton, “Vitamin E and paraquat poisoning,” Veterinary and Human Toxicology, vol. 22, no. 6, pp. 395–397, 1980.
[163]  R. J. Stephens, D. J. Buntman, and D. S. Negi, “Tissue levels of vitamin E in the lung and the cellular response to injury resulting from oxidant gas exposure,” Chest, vol. 83, no. 5, supplement 1, pp. 37S–39S, 1983.
[164]  D. L. Warren, D. M. Hyde, and J. A. Last, “Synergistic interaction of ozone and respirable aerosols on rat lungs. IV. Protection by quenchers of reactive oxygen species,” Toxicology, vol. 53, no. 1, pp. 113–133, 1988.
[165]  T. Yasaka, K. Okudaira, and H. Fujito, “Further studies of lipid peroxidation in human paraquat poisoning,” Archives of Internal Medicine, vol. 146, no. 4, pp. 681–685, 1986.
[166]  Z. E. Suntres, S. R. Hepworth, and P. N. Shek, “Pulmonary uptake of liposome-associated -tocopherol following intratracheal instillation in rats,” Journal of Pharmacy and Pharmacology, vol. 45, no. 6, pp. 514–520, 1993.
[167]  M. E. Knight and R. J. Roberts, “Tissue vitamin E levels in newborn rabbits after pharmacologic dosing. Influence of dose, dosage form, and route of administration,” Developmental Pharmacology and Therapeutics, vol. 8, no. 2, pp. 96–106, 1985.
[168]  N. Hidiroglou, L. F. Laflamme, and L. R. McDowell, “Blood plasma and tissue concentrations of vitamin E in beef cattle as influenced by supplementation of various tocopherol compounds,” Journal of Animal Science, vol. 66, no. 12, pp. 3227–3234, 1988.
[169]  P. P. Constantinides, J. Han, and S. S. Davis, “Advances in the use of tocols as drug delivery vehicles,” Pharmaceutical Research, vol. 23, no. 2, pp. 243–255, 2006.
[170]  H. N. Bhagavan and R. K. Chopra, “Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics,” Free Radical Research, vol. 40, no. 5, pp. 445–453, 2006.
[171]  F. L. Crane, “Biochemical functions of coenzyme Q10,” Journal of the American College of Nutrition, vol. 20, no. 6, pp. 591–598, 2001.
[172]  Y. Zambito, C. Zaino, and G. Di Colo, “Effects of N-trimethylchitosan on transcellular and paracellular transcorneal drug transport,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 64, no. 1, pp. 16–25, 2006.
[173]  S. Wang, J. Zhang, T. Jiang et al., “Protective effect of Coenzyme Q10 against oxidative damage in human lens epithelial cells by novel ocular drug carriers,” International Journal of Pharmaceutics, vol. 403, no. 1-2, pp. 219–229, 2011.
[174]  A. S. Strimpakos and R. A. Sharma, “Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials,” Antioxidants and Redox Signaling, vol. 10, no. 3, pp. 511–545, 2008.
[175]  P. Anand, S. G. Thomas, A. B. Kunnumakkara et al., “Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature,” Biochemical Pharmacology, vol. 76, no. 11, pp. 1590–1611, 2008.
[176]  A. Kumar, A. Ahuja, J. Ali, and S. Baboota, “Conundrum and therapeutic potential of curcumin in drug delivery,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 27, no. 4, pp. 279–312, 2010.
[177]  S. Padhye, D. Chavan, S. Pandey, J. Deshpande, K. V. Swamy, and F. H. Sarkar, “Perspectives on chemopreventive and therapeutic potential of curcumin analogs in medicinal chemistry,” Mini Reviews in Medicinal Chemistry, vol. 10, no. 5, pp. 372–387, 2010.
[178]  C. M. Mach, L. Mathew, S. A. Mosley, R. Kurzrock, and J. A. Smith, “Determination of minimum effective dose and optimal dosing schedule for liposomal curcumin in a xenograft human pancreatic cancer model,” Anticancer Research, vol. 29, no. 6, pp. 1895–1899, 2009.
[179]  J. Brittes, M. Lúcio, C. Nunes, J. L. F. C. Lima, and S. Reis, “Effects of resveratrol on membrane biophysical properties: relevance for its pharmacological effects,” Chemistry and Physics of Lipids, vol. 163, no. 8, pp. 747–754, 2010.
[180]  S. Sadruddin and R. Arora, “Resveratrol: biologic and therapeutic implications,” Journal of the CardioMetabolic Syndrome, vol. 4, no. 2, pp. 102–106, 2009.
[181]  C. H. Cottart, V. Nivet-Antoine, C. Laguillier-Morizot, and J. L. Beaudeux, “Resveratrol bioavailability and toxicity in humans,” Molecular Nutrition and Food Research, vol. 54, no. 1, pp. 7–16, 2010.
[182]  J. Kristl, K. Teska?, C. Caddeo, Z. Abramovi?, and M. ?entjurc, “Improvements of cellular stress response on resveratrol in liposomes,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 73, no. 2, pp. 253–259, 2009.
[183]  B. A. Graf, W. Mullen, S. T. Caldwell et al., “Disposition and metabolism of [2-14C]quercetin- - glucoside in rats,” Drug Metabolism and Disposition, vol. 33, no. 7, pp. 1036–1043, 2005.
[184]  Y. M. A. Naguib, “Antioxidant activities of astaxanthin and related carotenoids,” Journal of Agricultural and Food Chemistry, vol. 48, no. 4, pp. 1150–1154, 2000.
[185]  C. H. Peng, C. H. Chang, R. Y. Peng, and C. C. Chyau, “Improved membrane transport of astaxanthine by liposomal encapsulation,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 75, no. 2, pp. 154–161, 2010.
[186]  M. P. Barros, E. Pinto, P. Colepicolo, and M. Pedersén, “Astaxanthin and peridinin inhibit oxidative damage in Fe2+-loaded liposomes: scavenging oxyradicals or changing membrane permeability?” Biochemical and Biophysical Research Communications, vol. 288, no. 1, pp. 225–232, 2001.
[187]  N. K. Narayanan, D. Nargi, C. Randolph, and B. A. Narayanan, “Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice,” International Journal of Cancer, vol. 125, no. 1, pp. 1–8, 2009.
[188]  Z. E. Suntres and A. Omri, “The role of liposomal antioxidants in oxidative stress,” in Nanocarrier Technologies, M. R. Mozafari, Ed., pp. 191–205, Springer, Amsterdam, The Netherlands, 2006.


comments powered by Disqus

Contact Us


微信:OALib Journal