All Title Author
Keywords Abstract


Deriving the Exact Percentage of Dark Energy Using a Transfinite Version of Nottale’s Scale Relativity

DOI: 10.4236/ijmnta.2012.14018, PP. 118-124

Keywords: Dark Energy, Lorentz Factor, Scale Relativity, Cantor Set, Hausdorff Dimension, Hardy’s Quantum Entanglement

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper Nottale’s acclaimed scale relativity theory is given a transfinite Occam’s razor leading to exact predictions of the missing dark energy [1,2] of the cosmos. It is found that 95.4915% of the energy in the cosmos according to Einstein’s prediction must be dark energy or not there at all. This percentage is in almost complete agreement with actual measurements.

References

[1]  L. Amendola and S. Tsujikawa, “Dark Energy: Theory and Observations,” Cambridge University Press, Cambridge, 2010.
[2]  Y. Baryshev and P. Teerikorpi, “Discovery of Cosmic Fractals,” World Scientific, Singapore, 2002.
[3]  M. S. El Naschie, L. Nottale, S. Al Athel and G. Ord, “Fractal Space-Time and Cantorian Geometry in Quantum Mechanics,” Chaos, Solitons & Fractals, Vol. 7, No. 6, 1996, pp. 877-938.
[4]  M. S. El Naschie, “The Theory of Cantorian Space-Time and High Energy Particle Physics: An Informal Review,” Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2635-2646. doi:10.1016/j.chaos.2008.09.059
[5]  M. S. El Naschie, “A Review of E-Infinity and the Mass Spectrum of High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 19, No. 1, 2004, pp. 209-236. doi:10.1016/S0960-0779(03)00278-9
[6]  J.-H. He, L. Marek-Crnjac, M. A. Helal, S. I. Nada and O. E. Rossler, “Quantum Golden Mean Entanglement Test as the Signature of the Fractality of Micro Space-Time,” Nonlinear Science Letters B, Vol. 1, No. 2, 2011, pp. 45-50.
[7]  L. Nottale, “Scale Relativity and Fractal Space-Time,” Imperial College Press, London, 2011.
[8]  L. Nottale, “Fractal Space-Time and Micro Physics,” World Scientific, Singapore, 1993.
[9]  J. Polchinski, “String Theory,” Cambridge University Press, Cambridge, 1998.
[10]  C. Rovelli, “Quantum Gravity,” Cambridge University Press, Cambridge, 2004. doi:10.1017/CBO9780511755804
[11]  R. Penrose, “The Road to Reality—A Complete Guide to the Laws of the Universe, Jonathan Cape, London, 2004.
[12]  J. Mageuijo and L. Smolin, “Lorentz Invariance with an Invariant Energy Scale,” 2001. http://arxiv.org/abs/hep-th/0112090
[13]  J. Mageuijo, “Faster than the Speed of Light,” William Heinemann, London, 2003.
[14]  M. S. El Naschie, “Quantum Entanglement as a Consequence of a Cantorian Micro Space-Time Geometry,” Journal of Quantum Information Science, Vol. 1, No. 2, 2011, pp. 50-53. doi:10.4236/jqis.2011.12007
[15]  M. S. El Naschie, “On an Eleven Dimensional E-Infinity Fractal Space-Time Theory,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 4, 2006, pp. 407-409.
[16]  M .S. El Naschie, “The Discrete Charm of Certain Eleven Dimensional Space-Time Theory,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 4, 2006, pp. 477-481.
[17]  A. Connes, “Noncommutative Geometry,” Academic Press, San Diego, 1994.
[18]  M. S. El Naschie, “Transfinite Harmonization by Taking the Dissonance out of the Quantum Field Symphony,” Chaos, Solitons & Fractals, Vol. 36, No. 4, 2008, pp. 781-786. doi:10.1016/j.chaos.2007.09.018
[19]  S. T. Yau and S. Nadis, “The Shape of Inner Space,” Basic Book, Persens Group, New York, 2010.
[20]  J. Ambjorn, J. Jurkiewicz and R. Loll, “Lattice Quantum Gravity—An Update,” 2011. http://arxiv.org/abs/1105.5582

Full-Text

comments powered by Disqus