All Title Author
Keywords Abstract


Cumulus cells steroidogenesis is influenced by the degree of oocyte maturation

DOI: 10.1186/1477-7827-1-45

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to obtain germ cells characterized by a different degree of developmental competence, selected pig oocytes from prepubertal gilts ovaries were cultured under different IVM protocols; part of the matured oocytes were used to produce OCM, while those remaining were submitted to in vitro fertilization trials to confirm their ability to sustain male pronuclear decondensation. The OCM collected were finally used on cumulus cells grown as monolayers for 5 days. The demonstration that oocytes secreted factor(s) can influence GC steroidogenesis in the pig was confirmed in our lab by studying E2 and P4 production by cumulus cells monolayers using a radioimmunoassay technique.Monolayers obtained by growing GC surrounding the oocytes for five days represent a tool, which is practical, stable and available in most laboratories; by using this bioassay, we detected the antiluteal effect of immature oocytes, and for the first time, demonstrated that properly matured germ cells are able to direct cumulus cells steroidogenesis by inhibiting E2 production (P < 0.01). Nevertheless, only fully competent oocytes were able to suppress estrogens production, while those cultured under unfavourable conditions were unable to exert any inhibitory effect on the functions of cumulus cells (P < 0.01).These results demonstrated that good quality oocytes can be easily selected on the basis of their ability to affect granulosa cell steroidogenesis thus reducing failures in reproductive technologies due to the transfer of fertilized oocytes with a scarce ability to sustain embryo development.Oocyte developmental competence, which involves the ability of a germ cell to produce a normal and viable embryo after fertilization, is a condition that results from both nuclear and cytoplasmic maturation. Under natural conditions, the occurrence of maturation is characterized by a high developmental competence of the cell but when this process is carried out in experimental conditions (in vitro or by

Full-Text

comments powered by Disqus