All Title Author
Keywords Abstract


Keywords: SV , SVD , OSVD , PCA

Full-Text   Cite this paper   Add to My Lib


It has been read and also seen by physical encounters that there found to be seven near resembling humans by appearance .Many a times one becomes confused with respect to identification of such near resembling faces when one encounters them. The recognition of familiar faces plays a fundamental role in our social interactions. Humans are able to identify reliably a large number of faces and psychologists are interested in understanding the perceptual and cognitive mechanisms at the base of the face recognition process. As it is needed that an automated face recognition system should be faces specific, it should effectively use features that discriminate a face from others by preferably amplifying distinctive characteristics of face. Face recognition has drawn wide attention from researchers in areas of machine learning, computer vision, pattern recognition, neural networks, access control, information security, law enforcement and surveillance, smart cards etc. The paper shows that the most resembling faces can be recognized by having a unique value per face under different variations. Certain image transformations, such as intensity negation, strange viewpoint changes, and changes in lighting direction can severely disrupt human face recognition. It has been said again and again by research scholars that SVD algorithm is not good enough to classify faces under large variations but this paper proves that the SVD algorithm is most robust algorithm and can be proved effective in identifying faces under large variations as applicable to unique faces. This paper works on these aspects and tries to recognize the unique faces by applying optimized SVD algorithm.


comments powered by Disqus