All Title Author
Keywords Abstract

Nutrients  2013 

Selenium Content in Seafood in Japan

DOI: 10.3390/nu5020388

Keywords: selenium, mercury, food safety, muscle, fish, seafood

Full-Text   Cite this paper   Add to My Lib

Abstract:

Selenium is an essential micronutrient for humans, and seafood is one of the major selenium sources, as well as red meat, grains, eggs, chicken, liver and garlic. A substantial proportion of the total amount of selenium is present as selenium containing imidazole compound, selenoneine, in the muscles of ocean fish. In order to characterize the selenium content in seafood, the total selenium levels were measured in the edible portions of commercially important fish and shellfish species. Among the tested edible portions, alfonsino muscle had the highest selenium levels (concentration of 1.27 mg/kg tissue). High levels of selenium (1.20–1.07 mg/kg) were also found in the salted ovary products of mullet and Pacific herring. In other fish muscles, the selenium levels ranged between 0.12 and 0.77 mg/kg tissue. The selenium levels were closely correlated with the mercury levels in the white and red muscles in alfonsino. The selenium content in spleen, blood, hepatopancreas, heart, red muscle, white muscle, brain, ovary and testis ranged between 1.10 and 24.8 mg/kg tissue in alfonsino.

References

[1]  Combs, G.F.; Combs, S.B. The Role of Selenium in Nutrition; Academic Press: Orlando, FL, USA, 1986; pp. 1–532.
[2]  Himeno, S.; Imura, N. New aspects of physiological and pharmacological roles of selenium. J. Health Sci. 2000, 46, 1–6, doi:10.1248/jhs.46.1.
[3]  Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233–241.
[4]  Fairweather-Tait, S.J.; Collings, R.; Hurst, R. Selenium bioavailability: Current knowledge and future research requirements. Am. J. Clin. Nutr. 2010, 91, S1484–S1491.
[5]  Yamashita, Y.; Yamashita, M. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J. Biol. Chem. 2010, 285, 18134–18138, doi:10.1074/jbc.C110.106377.
[6]  Yamashita, Y.; Yabu, T.; Yamashita, M. Discovery of the strong antioxidant selenoneine in tuna and selenium redox metabolism. World J. Biol. Chem. 2010, 1, 144–150, doi:10.4331/wjbc.v1.i5.144.
[7]  Yamashita, Y.; Amlund, H.; Suzuki, T.; Hara, T.; Hossain, A.M.; Yabu, T.; Touhata, K.; Yamashita, M. Selenoneine, total selenium, and total mercury content in the muscle of fishes. Fish. Sci. 2010, 77, 679–686.
[8]  Ganther, H.; Goudie, C.; Sunde, M.; Kopeckey, M.; Wagner, S.; Hoekstra, W. Selenium: Relation to decreased toxicity of methylmercury added to diets containing tuna. Science 1972, 175, 1122–1124.
[9]  Ralston, N.V.C.; Ralston, C.R.; Blackwell, J.L.; Raymond, L.J. Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology 2008, 29, 802–811, doi:10.1016/j.neuro.2008.07.007.
[10]  Ralston, N.V.C.; Blackwell, J.L.; Raymond, L.J. Importance of molar ratios in selenium—dependent protection against methylmercury toxicity. Biol. Trace Elem. Res. 2007, 119, 255–268, doi:10.1007/s12011-007-8005-7.
[11]  Yamashita, Y.; Omura, Y.; Okazaki, E. Total mercury and methylmercury levels in commercially important fishes in Japan. Fish. Sci. 2005, 71, 1029–1035.
[12]  Watkinson, J.H. Fluorometric determination of selenium in biological material with 2,3-diaminonapththalene. Anal. Chem. 1966, 38, 92–97, doi:10.1021/ac60233a025.
[13]  Kryukox, G.V.; Gladyshev, V.N. Selenium metabolism in zebrafish: Multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues. Genes Cells 2000, 5, 1049–1060, doi:10.1046/j.1365-2443.2000.00392.x.
[14]  Nagai, T.; Inada, J.; Hmada, M.; Kai, N.; Tanoue, Y.; Kaminishi, Y.; Nakagawa, H.; Fujiki, K.; Nakao, M. Distribution of glutathione peroxidase activity in fish. Fish. Sci. 1999, 65, 665–666, doi:10.2331/suisan.65.665.
[15]  Thompson, J.L.; See, V.H.L.; Thomas, P.M.; Schuller, K.A. Cloning and characterization of two glutathione peroxidase cDNAs from southern bluefin tuna (Thunnus maccoyii). Comp. Biochem. Physiol. 2010, 156, 287–297.
[16]  Yamashita, Y.; Yabu, T.; Touhata, K.; Yamashita, M. Purification and characterization of glutathione peroxidase 1 in the red muscle of bluefin tuna. Fish. Sci. 2012, 79, 407–411.
[17]  Vendeland, S.C.; Beilstein, M.A.; Chen, C.L.; Jensen, O.N.; Barofsky, E.; Whanger, P.D. Purification and properties of selenoprotein W from rat muscle. J. Biol. Chem. 1993, 268, 17103–17107.
[18]  Arnér, E.S. Focus on mammalian thioredoxin reductases—Important selenoproteins with versatile functions. Biochim. Biophys. Acta 2009, 1790, 495–526, doi:10.1016/j.bbagen.2009.01.014.
[19]  Ralston, N.V.; Raymond, L.J. Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 2010, 278, 112–123, doi:10.1016/j.tox.2010.06.004.
[20]  Yamashita, M.; Yamashita, Y.; Suzuki, T.; Kani, K.; Mizusawa, N.; Imamura, S.; Takemoto, T.; Hara, T.; Hossain, M.A.; Yabu, T.; Touhata, K. National Research Institute of Fisheries Science, Yokohama, Japan. Selenoneine, a novel selenium-containing compound, mediates detoxification mechanisms against methylmercury accumulation and toxicity in zebrafish embryo. Mar. Biotechnol. 2013. submitted.

Full-Text

comments powered by Disqus