全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biophysical Properties of Cultivated Pastures in the Brazilian Savanna Biome: An Analysis in the Spatial-Temporal Domains Based on Ground and Satellite Data

DOI: 10.3390/rs5010307

Keywords: pasture monitoring, cerrado biome, vegetation indices, MODIS time series

Full-Text   Cite this paper   Add to My Lib

Abstract:

Brazil has the largest commercial beef cattle herd in the world, with cattle ranching being particularly prominent in the 200-million ha, Brazilian neotropical moist savanna biome, known as Cerrado, one of the world’s hotspots for biodiversity conservation. As decreasing productivity is a major concern affecting the Cerrado pasturelands, evaluation of pasture conditions through the determination of biophysical parameters is instrumental for more effective management practices and herd occupation strategies. Within this context, the primary goal of this study was the regional assessment of pasture biophysical properties, through the scaling of wet- and dry-season ground truth data (total biomass, green biomass, and % green cover) via the combined use of high (Landsat-TM) and moderate (MODIS) spatial resolution vegetation index images. Based on the high correlation found between NDVI (normalized difference vegetation index) and % green cover (r = 0.95), monthly MODIS-based % green cover images were derived for the 2009–2010 hydrological cycle, which were able to capture major regional patterns and differences in pasture biophysical responses, including the increasing greenness values towards the southern portions of the biome, due to both local conditions (e.g., more fertile soils) and management practices. These results corroborate the development of biophysically-based landscape degradation indices, in support of improved land use governance and natural area conservation in the Cerrado.

References

[1]  CNPC. Balan?o de Pecuária Bovídea de Corte: 1994–2010; CNPC: S?o Paulo, Brazil, 2011.
[2]  Bustamante, M.M.C.; Nobre, C.A.; Smeraldi, R.; Aguiar, A.P.D.; Barioni, L.G.; Ferreira, L.G.; Longo, K.; May, P.; Ometto, J.P.H.; Pinto, A.S. Estimating greenhouse gas emissions from cattle raising in Brazil. Climatic Change 2012, doi:10.1007/s10584-012-0443-3.
[3]  Sano, E.E.; Barcellos, A.O.; Bezerra, H.S. Assessing the spatial distribution of cultivated pastures in the Brazilian savanna. Pasturas Tropicales 2000, 22, 2–15.
[4]  Brossard, M.; Barcellos, O. Convers?o do cerrado em pastagens cultivadas e funcionamento de latossolos. Cadernos de Ciências & Tecnologia 2005, 22, 153–168.
[5]  Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858.
[6]  Jepson, W. A disappearing biome? Reconsidering land cover change in the Brazilian savanna. Geogr. J 2005, 17, 99–111.
[7]  Klink, C.A.; Machado, R.B. A conserva??o do Cerrado brasileiro. Megadiversidade 2005, 1, 147–155.
[8]  Sano, E.E.; Rosa, R.; Brito, J.L.S.; Ferreira, L.G. Land cover mapping of the tropical savanna region in Brazil. Environ. Monit. Assess 2010, 166, 113–124.
[9]  Carvalho, F.M.V.; de Marco, P.; Ferreira, L.G., Jr. The Cerrado into pieces: Habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol. Conserv 2009, 142, 1392–1403.
[10]  Bustamante, M.; Ferreira, L.G. Land Use Change and the Carbon Budget in the Brazilian Cerrado. In Ecosystem Function in Savannas: Measurement and Modeling at Landscape to Global Scales; Hill, M.J., Niall, P., Hanan, N.P., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 367–382.
[11]  Martha, G.B.; Vilela, L. Pastagens no Cerrado: Baixa Produtividade pelo Uso Limitado de Fertilizantes; Embrapa Cerrados: Planaltina, Brazil, 2002.
[12]  Oliveira, O.C.; Oliveira, I.P.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M. Chemical and biological indicators of decline/degradation of Brachiaria pasture in the Brazilian Cerrado. Agri. Ecosyst. Environ 2004, 103, 289–300.
[13]  Macedo, M.C.M. Pastagens No Ecossistema Cerrados. In SIMPóSIO SOBRE PASTAGENS NOS ECOSSISTEMAS BRASILEIROS: Pesquisas Para O Desenvolvimento Sustentável; Sociedade Brasileira de Zootecnia: Brasília, Brazil, 1995; pp. 28–62.
[14]  Garcia-Oliva, F.; Lancho, J.F.G.; Montano, N.M.; Islas, P. Soil carbon and nitrogen dynamics followed by a forest-to-pasture conversion in western Mexico. Agroforest. Syst 2006, 66, 93–100.
[15]  Rocha, G.F.; Ferreira, L.G.; Ferreira, N.C.; Ferreira, M.E. Detec??o de desmatamentos no bioma Cerrado entre 2002 e 2009: Padr?es, tendências e impactos. Rev. Bras. Cartografia 2011, 63, 341–349.
[16]  Ferreira, M.E.; Silva, J.R.; Rocha, G.F.; Antoniazzi, L.; Nassar, A. Caracteriza??o das áreas desmatadas no bioma Cerrado via sensoriamento remoto: uma análise sobre a expans?o de culturas agrícolas e pastagens cultivadas. Proceedings of Simpósio Brasileiro de Sensoriamento Remoto, Curitiba, Brazil, 30 April 2011; pp. 6727–6733.
[17]  Numata, I.; Roberts, D.A.; Chadwick, O.A.; Schimel, J.; Sampaio, F.R.; Leonidas, F.C.; Soares, J.V. Characterization of pasture biophysical properties and the impact of grazing intensity using remotely sensed data. Remote Sens. Environ 2007, 109, 314–327.
[18]  Davidson, E.A.; Asner, G.P.; Stone, T.A.; Neill, C.; Figueiredo, R.O. Objective indicators of pasture degradation from spectral mixture analysis of Landsat imagery. J. Geophys. Res. 2008, doi:10.1029/2007JG000622.
[19]  Ministério do Meio Ambiente (MMA). Mapeamento da Cobertura Vegetal do Bioma Cerrado. Relatório Final. Edital Probio 02/2004, Projeto Executivo B.02.02.109;; Embrapa Cerrados: Planaltina, Brazil, 2007.
[20]  Costa, M.H.; Botta, A.; Cardille, J.A. Effects of large-scale changes in land cover on the discharge of the Tocantins river, Southeastern Amazonia. J. Hydrol 2007, 283, 206–217.
[21]  Ferreira, L.G.; Asner, G.P.; Knapp, D.E.; Davidson, E.A.; Coe, M.; Bustamante, M.M.C.; Oliveira, E.L. Equivalent water thickness in savanna ecosystems: MODIS estimates based on ground and EO-1 Hyperion data. Int. J. Remote Sens 2011, 111, 1–18.
[22]  Coe, M.; Latrubesse, E.M.; Ferreira, M.E.; Amsler, M.L. The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 2011, 105, 119–131.
[23]  Costa, M.H.; Pires, G.F. Effects of Amazon and central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol. 2009, doi:10.1002/joc.2048.
[24]  Malhado, A.C.M.; Pires, G.F.; Costa, M.H. Cerrado conservation is essential to protect the Amazon rainforest. Ambio 2010, 39, 580–584.
[25]  Caselles, V.; Lopéz-García, M.J. An alternative simple approach to estimate atmospheric correction in multitemporal studies. Int. J. Remote Sens 1989, 10, 1127–1134.
[26]  Tanre, D.; Holben, B.N.; Kaufman, Y.J. Atmospheric correction algorithm for NOAA-AVHRR products: Theory and application. IEEE Trans. Geosci. Remote Sens 1992, 30, 231–248.
[27]  Huete, A.R.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ 2002, 83, 195–213.
[28]  Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ 2008, 112, 3833–3845.
[29]  Solano, R.; Didan, K.; Jacobson, A.; Huete, A.R. MODIS Vegetation Indices (MOD13) User’s Guide, 2010. Available online: http://tbrs.arizona.edu/project/MODIS/MOD13.C5-UsersGuide-HTML-v1.00 (accessed on 25 February 2011).
[30]  Rojas, F.; Schowengerdt, R.A.; Biggar, S.F. Early results on the characterization of the Terra MODIS spatial response. Remote Sens. Environ 2002, 83, 50–61.
[31]  Schowengerdt, R.A. Remote Sensing, Models and Methods for Image Processing; Elsevier: San Diego, CA, USA, 2007.
[32]  Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072.
[33]  Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol 1998, 15, 809–817.
[34]  Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ 2011, 115, 1781–1800.
[35]  Ferreira, L.G.; Yoshioka, H.; Huete, A.R.; Sano, E.E. Seasonal landscape and spectral vegetation index dynamics in the Brazilian Cerrado: An analysis within the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). Remote Sens. Environ 2003, 87, 534–550.
[36]  WMO. WMO statement on the status of the global climate in 2010. World Meteorol 2011, 1074, 1–15.
[37]  Sano, E.E.; Barcellos, A.O.; Bezerra, H.S. Assessing the spatial distribution of cultivated pastures in the Brazilian savanna. Pasturas Tropicales 2000, 22, 2–15.
[38]  Oliveira, O.C.; Oliveira, I.P.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M. Chemical and biological indicators of decline/degradation of Brachiaria pastures in the Brazilian Cerrado. Agr. Ecosyst. Environ 2004, 103, 289–300.
[39]  Paruelo, J.M.; Lauenroth, W.K. Regional patterns of Normalized Difference Vegetation Index in North American shrublands and grasslands. Ecology 1995, 76, 1888–1898.
[40]  Psomas, A.; Kneubühler, M.; Huber, S.; Itten, K.; Zimmermann, N.E. Hyperspectral remote sensing for estimating aboveground biomass and for exploring species richness patterns of grassland habitats. Int. J. Remote Sens 2011, 32, 9007–9031.
[41]  Hobbs, R.J.; Huenneke, L.F. Disturbance, diversity, and invasion: Implications for conservation. Conserv. Biol 1992, 6, 324–337.
[42]  Verburg, P.H.; van de Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manage 2009, 90, 1327–1335.
[43]  Obata, K.; Wada, T.; Miura, T.; Yoshioka, H. Scaling effect of area-averaged NDVI: Monotonicity along the spatial resolution. Remote Sens 2012, 4, 160–179.
[44]  Edirisinghe, A.; Hill, M.J.; Donald, G.E.; Hyder, M. Quantitative mapping of pasture biomass using satellite imagery. Int. J. Remote Sens 2011, 32, 2699–2724.
[45]  Garbulsky, M.F.; Pe?uelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote Sens. Environ 2011, 115, 281–297.
[46]  Seastedt, T.R.; Knapp, A.K. Consequences of non-equilibrium resource availability across multiple time scales: the transient maxima hypothesis. Amer. Nat 1993, 141, 621–633.
[47]  Zoneamento Agroecológico da Cana-de-A?úcar. EMBRAPA, 2009 (Brasília), Available online: http://www.cnps.embrapa.br/zoneamento_cana_de_acucar/ZonCana.pdf (accessed on 15 January 2013).
[48]  Martinelli, L.A.; Filoso, S. Expansion of sugarcane ethanol production in Brazil: Environmental and social challenges. Ecol. Appl 2008, 18, 885–898.
[49]  Sawyer, D. Climate change, biofuels and eco-social impacts in the Brazilian Amazon and Cerrado. Philos. Trans. Roy. Soc. Biol. Sci 2008, 363, 1747–1752.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133