All Title Author
Keywords Abstract


Dendritic development of Drosophila high order visual system neurons is independent of sensory experience

DOI: 10.1186/1471-2202-4-14

Full-Text   Cite this paper   Add to My Lib

Abstract:

We find that the dendrites of VS1 neurons are unchanged in dark-reared flies as compared to control flies raised on a 12 hour light, 12 hour dark cycle. The dendrites of these flies show no differences from control in dendrite complexity, spine number, spine density, or axon complexity. Flies with genetically ablated eyes show a slight but significant reduction in the complexity and overall length of VS1 dendrites, although this effect may be due to a reduction in the overall size of the dendritic field in these flies.Overall, our results indicate no role for visual experience in the development of VS dendrites, while spontaneous activity from photoreceptors may play at most a subtle role in the formation of fully complex dendrites in these high-order visual processing neurons.The mechanisms that underlie the development of the nervous system are numerous and diverse. Over the past several decades, research has begun to give us a sense of the importance of both preprogrammed, invariant mechanisms for neural development, and also programs for development that depend on experience and the electrical activity of the developing neurons themselves. The fact that certain types of neurons develop their basic morphologies even when isolated in culture from other cells provides a simple but powerful argument for the importance of cell autonomous mechanisms in the establishment of neuronal structure [1,2]. These and numerous other experiments have provided overwhelming evidence that neurons possess endogenous, activity independent programs that account for important aspects of their development.On the other hand, neurons deprived of contact with or activity from their normal synaptic partners seldom attain a fully mature structure. For example, Purkinje cells deprived of their efferent projections in Weaver mice have dendritic arborizations that do not extend normally [3]. Additionally, the structures of neurons can be affected by an absence of activity from their efferent pa

Full-Text

comments powered by Disqus