All Title Author
Keywords Abstract

Viruses  2013 

Deregulation of Epigenetic Mechanisms by the Hepatitis B Virus X Protein in Hepatocarcinogenesis

DOI: 10.3390/v5030858

Keywords: Hepatitis B virus (HBV), HBV X protein, Hepatocellular Carcinoma (HCC), HBV replication, epigenetic regulation, DNA methylation, DNA methyl transferases (DNMTs), Polycomb Repressive complex 2 (PRC2), Suz12, suppressor of zeste 12 homolog (Drosophila), Znf198, zinc finger, MYM-type 2, LSD1-Co-REST-HDAC1

Full-Text   Cite this paper   Add to My Lib


This review focuses on the significance of deregulation of epigenetic mechanisms by the hepatitis B virus (HBV) X protein in hepatocarcinogenesis and HBV replication. Epigenetic mechanisms, DNA methylation, and specific histone modifications, e.g., trimethylation of H3 on lysine-27 or lysine-4, maintain ‘cellular memory’ by silencing expression of lineage-inducing factors in stem cells and conversely, of pluripotency factors in differentiated cells. The X protein has been reported to induce expression of DNA methyltransferases (DNMTs), likely promoting epigenetic changes during hepatocarcinogenesis. Furthermore, in cellular and animal models of X-mediated oncogenic transformation, protein levels of chromatin modifying proteins Suz12 and Znf198 are down-regulated. Suz12 is essential for the Polycomb Repressive Complex 2 (PRC2) mediating the repressive trimethylation of H3 on lysine-27 (H3K27me3). Znf198, stabilizes the LSD1-CoREST-HDAC complex that removes, via lysine demethylase1 (LSD1), the activating trimethylation of H3 on lysine-4 (H3K4me3). Down-regulation of Suz12 also occurs in liver tumors of woodchucks chronically infected by woodchuck hepatitis virus, an animal model recapitulating HBV-mediated hepatocarcinogenesis in humans. Significantly, subgroups of HBV-induced liver cancer re-express hepatoblast and fetal markers, and imprinted genes, suggesting hepatocyte reprogramming during oncogenic transformation. Lastly, down-regulation of Suz12 and Znf198 enhances HBV replication. Collectively, these observations suggest deregulation of epigenetic mechanisms by HBV X protein influences both the viral cycle and the host cell.


[1]  Beasley, R.P.; Hwang, L.Y.; Lin, C.C.; Chien, C.S. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22,707 men in Taiwan. Lancet 1981, 2, 1129–1133.
[2]  Bruix, J.; Boix, L.; Sala, M.; Llovet, J.M. Focus on hepatocellular carcinoma. Cancer Cell. 2004, 5, 215–219, doi:10.1016/S1535-6108(04)00058-3.
[3]  El-Serag, H.B.; Rudolph, K.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology 2007, 132, 2557–2576, doi:10.1053/j.gastro.2007.04.061.
[4]  Parkin, D.M. International variation. Oncogene 2004, 23, 6329–6340, doi:10.1038/sj.onc.1207726.
[5]  Thomas, M.B.; Jaffe, D.; Choti, M.M.; Belghiti, J.; Curley, S.; Fong, Y.; Gores, G.; Kerlan, R.; Merle, P.; O'Neil, B.; et al. Hepatocellular carcinoma: Consensus recommendations of the National Cancer Institute Clinical Trials Planning Meeting. J. Clin. Onocol. 2010, 28, 3994–4005, doi:10.1200/JCO.2010.28.7805.
[6]  Hoshida, Y.; Nijman, S.M.; Kobayashi, M.; Chan, J.A.; Brunet, J.P.; Chiang, D.Y.; Villanueva, A.; Newell, P.; Ikeda, K.; Hashimoto, M.; et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009, 69, 7385–7392, doi:10.1158/0008-5472.CAN-09-1089.
[7]  Boyault, S.; Rickman, D.S.; de Reyniès, A.; Balabaud, C.; Rebouissou, S.; Jeannot, E.; Hérault, A.; Saric, J.; Belghiti, J.; Franco, D.; et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007, 45, 42–52, doi:10.1002/hep.21467.
[8]  Seeger, C.; Mason, W.S. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev. 2000, 64, 51–68, doi:10.1128/MMBR.64.1.51-68.2000.
[9]  Zoulim, F.; Saputelli, J.; Seeger, C. Woodchuck hepatitis virus X protein is required for viral infection in vivo. J. Virol. 1994, 68, 2026–2030.
[10]  Lucifora, J.; Arzberger, S.; Durantel, D.; Belloni, L.; Strubin, M.; Levrero, M.; Zoulim, F.; Hantz, O.; Protzer, U. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J. Hepatol. 2011, 55, 996–1003, doi:10.1016/j.jhep.2011.02.015.
[11]  Rabe, B.; Vlachou, A.; Panté, N.; Helenius, A.; Kann, M. Nuclear import of hepatitis B virus capsids and release of the viral genome. Proc. Natl. Acad. Sci. USA 2003, 100, 9849–9854, doi:10.1073/pnas.1730940100.
[12]  Weiser, B.; Ganem, D.; Seeger, C.; Varmus, H.E. Closed circular viral DNA and asymmetrical heterogeneous forms in livers of animals infected with ground squirrel hepatitis virus. J. Virol. 1983, 48, 1–9.
[13]  Summers, J.; Mason, W.S. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell 1982, 29, 403–415, doi:10.1016/0092-8674(82)90157-X.
[14]  Beck, J.; Nassal, M. Hepatitis B virus replication. World J. Gastroenterol. 2007, 13, 48–64.
[15]  Bock, C.T.; Schranz, P.; Schr?der, C.H.; Zentgraf, H. Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell. Virus Genes 1994, 8, 215–229, doi:10.1007/BF01703079.
[16]  Pollicino, T.; Belloni, L.; Raffa, G.; Pediconi, N.; Squadrito, G.; Raimondo, G.; Levrero, M. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology 2006, 130, 827–837.
[17]  Levrero, M.; Pollicino, T.; Petersen, J.; Belloni, L.; Raimondo, G.; Dandri, M. Control of cccDNA function in hepatitis B virus infection. J. Hepatol. 2009, 51, 581–592, doi:10.1016/j.jhep.2009.05.022.
[18]  Belloni, L.; Pollicino, T.; de Nicola, F., Guerrieri; Raffa, G.; Fanciulli, M.; Raimondo, G.; Levrero, M. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc. Natl. Acad. Sci. USA 2009, 106, 19975–19979.
[19]  Hagen, T.M.; Huang, S.; Curnutte, J.; Fowler, P.; Martinez, V.; Wehr, C.M.; Ames, B.N.; Chisari, F.V. Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 1994, 91, 12808–12812, doi:10.1073/pnas.91.26.12808.
[20]  Terradillos, O.; Billet, O.; Renard, C.A.; Levy, R.; Molina, T.; Briand, P.; Buendia, M.A. The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice. Oncogene 1997, 14, 395–404.
[21]  Madden, C.R.; Finegold, M.J.; Slagle, B.L. Hepatitis B virus X protein acts as a tumor promoter in development of diethylnitrosamine-induced preneoplastic lesions. J. Virol. 2001, 75, 3851–3858, doi:10.1128/JVI.75.8.3851-3858.2001.
[22]  Yin, J.; Xie, J.; Zhang, H.; Shen, Q.; Han, L.; Lu, W.; Han, Y.; Li, C.; Ni, W.; Wang, H.; et al. Significant association of different preS mutations with hepatitis B-related cirrhosis or hepatocellular carcinoma. J. Gastroenterol. 2010, 45, 1063–1071, doi:10.1007/s00535-010-0253-1.
[23]  Du, J.; Liang, X.; Liu, Y.; Qu, Z.; Gao, L.; Han, L.; Liu, S.; Cui, M.; Shi, Y.; Zhang, Z.; et al. Hepatitis B virus core protein inhibits TRAIL-induced apoptosis of hepatocytes by blocking DR5 expression. Cell Death Differ. 2009, 16, 219–229, doi:10.1038/cdd.2008.144.
[24]  Su, Q.; Schr?der, C.H.; Hofmann, W.J.; Otto, G.; Pichlmayr, R.; Bannasch, P. Expression of Hepatitis B virus X protein in HBV-infected human livers and hepatocellular carcinomas. Hepatology 1998, 27, 1109–1120, doi:10.1002/hep.510270428.
[25]  Buendia, M.A. Genetics of hepatocellular carcinoma. Semin. Cancer Biol. 2000, 10, 185–200, doi:10.1006/scbi.2000.0319.
[26]  Andrisani, O.M.; Barnabas, S. The transcriptional function of the hepatitis B virus X protein and its role in hepatocarcinogenesis. Int. J. Oncol. 1999, 15, 373–379.
[27]  Bouchard, M.J.; Schneider, R.J. The enigmatic X gene of hepatitis B virus. J. Virol. 2004, 78, 12725–12734, doi:10.1128/JVI.78.23.12725-12734.2004.
[28]  Ng, S.A.; Lee, C. Hepatitis B virus X gene and hepatocarcinogenesis. J. Gastroenterol. 2011, 46, 974–990, doi:10.1007/s00535-011-0415-9.
[29]  Rawat, S.; Clippinger, A.J.; Bouchard, M.J. Modulation of apoptotic signaling by the hepatisis B virus X protein. Viruses 2012, 4, 2945–2972, doi:10.3390/v4112945.
[30]  Rakotomalala, L.; Studach, L.; Wang, W.H.; Gregori, G.; Hullinger, R.L.; Andrisani, O. Hepatitis B virus X protein increases the Cdt-1-to-geminin ratio inducing DNA re-replication and polyploidy. J. Biol. Chem. 2008, 283, 28729–28740.
[31]  Studach, L.L.; Rakotomalala, L.; Wang, W.H.; Hullinger, R.L.; Cairo, S.; Buendia, M.A.; Andrisani, O.M. Polo-like kinase 1 inhibition suppresses hepatitis B virus X protein-induced transformation in an in vitro model of liver cancer progression. Hepatology 2009, 50, 414–423, doi:10.1002/hep.22996.
[32]  Studach, L.; Wang, W.H.; Weber, G.; Tang, J.; Hullinger, R.L.; Malbrue, R.; Liu, X.; Andrisani, O. Polo-like kinase 1 activated by the hepatitis B virus X protein attenuates both the DNA damage checkpoint and DNA repair resulting in partial polyploidy. J. Biol. Chem. 2010, 285, 30282–30293.
[33]  Golsteyn, R.M.; Schultz, S.J.; Bartek, J.; Ziemiecki, A.; Ried, T.; Nigg, E.A. Cell cycle analysis and chromosomal localization of human Plk1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5. J. Cell. Sci. 1994, 107, 1509–1517.
[34]  Mamely, I.; van Vugt, M.A.; Smits, V.A.; Semple, J.I.; Lemmens, B.; Perrakis, A.; Medema, R.H.; Freire, R. Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr. Biol. 2006, 16, 1950–1955, doi:10.1016/j.cub.2006.08.026.
[35]  Kumagai, A.; Dunphy, W.G. Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 1996, 273, 1377–1380.
[36]  Pelegrino, R.; Calvisi, D.F.; Ladu, S.; Ehemann, V.; Staniscia, T.; Evert, M.; Dombrowski, F.; Schirmacher, P.; Longerich, T. Oncogenic and tumor suppressive roles of Polo-like kinases in human hepatocellular carcinoma. Hepatology 2010, 51, 857–868.
[37]  Petrelli, A.; Perra, A.; Schernhuber , K.; Cargnelutti, M.; Salvi, A.; Migliore, C.; Ghiso, E.; Benetti, A.; Barlati, S.; Ledda-Columbano, G.M.; et al. Squential analysis of multistage hepatocarcinogenesis reveals that miR-100 and PLK1 dysregulation is an early event maintained along tumor progression. Oncogene 2012, 31, 4517–4526, doi:10.1038/onc.2011.631.
[38]  Chen, X.; Cheung, S.T.; So, S.; Fan, S.T.; Barry, C.; Higgins, J.; Lai, K.M.; Ji, J.; Dudoit, S.; Ng, I.O.; et al. Gene expression patterns in human liver cancers. Mol. Biol. Cell 2002, 13, 1929–1939, doi:10.1091/mbc.02-02-0023..
[39]  Bruinsma, W.; Raaijmakers, J.A.; Medema, R.H. Switching Polo-like kinase-1 on and off in time and space. Trends Biochem. Sci. 2012, 37, 534–542, doi:10.1016/j.tibs.2012.09.005.
[40]  Wang, W.H.; Studach, L.L.; Andrisani, O.M. Proteins ZNF198 and SUZ12 are down-regulated in hepatitis B virus (HBV) X protein-mediated hepatocyte transformation and in HBV replication. Hepatology 2011, 53, 1137–1147, doi:10.1002/hep.24163.
[41]  Xiao, S.; Nalabolu, S.; Aster, J.C.; Ma, J.; Abruzzo, L.; Jaffe, E.S.; Stone, R.; Weissman, S.M.; Hudson, T.J.; Fletcher, J.A. FGFR1 is fused with novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat. Genet. 1998, 18, 84–87.
[42]  Li, H.; Ma, X.; Wang, J.; Koontz, J.; Nucci, M.; Sklar, J. Effects of rearrangement and allelic exclusion of JJAZ1/SUZ12 on cell proliferation and survival. Proc. Natl. Acad. Sci. USA 2007, 104, 20001–20006.
[43]  Moinzadeh, P.; Breuhahn, K.; Stützer, H.; Schirmacher, P. Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade-results of an explorative CGH meta-analysis. Br. J. Cancer 2005, 92, 935–941, doi:10.1038/sj.bjc.6602448.
[44]  Chen, C.F.; Yeh, S.H.; Chen, D.S.; Chen, P.J.; Jou, Y.S. Molecular genetic evidence supporting a novel human hepatocellular carcinoma tumor suppressor locus at 13q12.11. Genes Chromosom. Cancer 2005, 44, 320–328, doi:10.1002/gcc.20247.
[45]  Villa, R.; Pasini, D.; Gutierrez, A.; Morey, L.; Occhionorelli, M.; Viré, E.; Nomdedeu, J.F.; Jenuwein, T.; Pelicci, P.J.; Minucci, S.; et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 2007, 11, 513–525, doi:10.1016/j.ccr.2007.04.009.
[46]  Kunapuli, P.; Kasyapa, C.S.; Chin, S.F.; Caldas, C.; Cowell, J.K. ZNF198, a zinc finger protein rearranged in myeloproliferative disease, localizes to the PML nuclear bodies and interacts with SUMO-1 and PML. Exp. Cell Res. 2006, 312, 3739–3751, doi:10.1016/j.yexcr.2006.06.037.
[47]  Bernardi, R.; Pandolfi, P.P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell Biol. 2007, 8, 1006–1016, doi:10.1038/nrm2277.
[48]  Torok, D.; Ching, R.W.; Bazett-Jones, D.P. PML nuclear bodies as sites of epigenetic regulation. Front. Biosci. 2009, 14, 1325–1336.
[49]  Cho, S.; Park, J.S.; Kang, Y.K. Dual functions of histone-lysine N-methyltransferase Setdb1 protein at promyelocytic leukemia-nuclear body (PML-NB): Maintaining PML-NB structure and regulating the expression of its associated genes. J. Biol. Chem. 2011, 286, 41115–41124.
[50]  Bernardi, R.; Papa, A.; Pandolfi, P.P. Regulation of apoptosis by PML and the PML-NBs. Oncogene 2008, 27, 6299–6312, doi:10.1038/onc.2008.305.
[51]  Dellaire, G.; Ching, R.W.; Ahmed, K.; Jalali, F.; Tse, K.C.; Bristow, R.G.; Bazett-Jones, D.P. Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, Chk2, and ATR. J. Cell. Biol. 2006, 175, 55–66, doi:10.1083/jcb.200604009.
[52]  Everett, R.D.; Chelbi-Alix, M.K. PML and PML nuclear bodies: Implications in antiviral defence. Biochimie 2007, 89, 819–830, doi:10.1016/j.biochi.2007.01.004.
[53]  Frappier, L. Viral disruption of promyelocytic leukemia (PML) nuclear bodies by hijacking host PML regulators. Virulence 2001, 2, 58–62, doi:10.4161/viru.2.1.14610.
[54]  Reineke, E.L.; Kao, H.Y. Targeting promyelocytic leukemia protein: A means to regulating PML nuclear bodies. Int. J. Biol. Sci. 2009, 5, 366–376, doi:10.7150/ijbs.5.366.
[55]  Gu, H.; Roizman, B. The two functions of herpes simplex virus 1 ICP0, inhibition of silencing by the CoREST/REST/HDAC complex and degradation of PML are executed in tandem. J. Virol. 2009, 83, 181–187, doi:10.1128/JVI.01940-08.
[56]  Gu, H.; Roizman, B. Engagement of the lysine-specific demethylase/HDAC1/CoREST/REST complex by herpes simplex virus 1. J. Virol. 2009, 83, 4376–4385, doi:10.1128/JVI.02515-08.
[57]  Chung, Y.L.; Tsai, T.Y. Promyelocytic leukemia nuclear bodies link the DNA damage repair pathway to hepatitis B virus replication: Implications for hepatitis B virus exacerbation during chemotherapy and radiotherapy. Mol. Cancer Res. 2009, 7, 1672–1685, doi:10.1158/1541-7786.MCR-09-0112.
[58]  Gocke, C.B.; Yu, H. ZNF198 stabilizes the LSD-1-CoREST-HDAC1 complex on chromatin through its MYM-type zinc fingers. PLoS One 2008, 3, e3255, doi:10.1371/journal.pone.0003255.
[59]  Cao, R.; Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol. Cell 2004, 15, 57–67, doi:10.1016/j.molcel.2004.06.020.
[60]  Squazzo, S.L.; O'Geen, H.; Komashko, V.M.; Krig, S.R.; Jin, V.X.; Jang, S.W.; Margueron, R.; Reinberg, D.; Green, R.; Farnham, P.J. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 2006, 16, 890–900, doi:10.1101/gr.5306606.
[61]  Simon, J.A.; Kingston, R.E. Mechanisms of polycomb gene silencing: Knowns and unknowns. Nat. Rev. Mol. Cell Biol. 2009, 10, 697–708.
[62]  Bracken, A.P.; Dietrich, N.; Pasini, D.; Hansen, K.H.; Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 2006, 20, 1123–1136, doi:10.1101/gad.381706.
[63]  Lee, T.I.; Jenner, R.G.; Boyer, L.A.; Guenther, M.G.; Levine, S.S.; Kumar, R.M.; Chevalier, B.; Johnstone, S.E.; Cole, M.F.; Isono, K.; et al. Control of developmentalregulators by Polycomb in human embryonic stem cells. Cell 2006, 125, 301–313, doi:10.1016/j.cell.2006.02.043.
[64]  Morey, L.; Helin, K. Polycombgroupprotein-mediated repression of transcription. Trends Biochem. Sci. 2010, 35, 323–332, doi:10.1016/j.tibs.2010.02.009.
[65]  Margueron, R.; Reinberg, D. The PolycombcomplexPRC2 and its mark in life. Nature 2011, 469, 343–349, doi:10.1038/nature09784.
[66]  Pasini, D.; Bracken, A.P.; Hansen, J.B.; Capillo, M.; Helin, K. The PolycombgroupproteinSuz12 is required for embryonic stem cell differentiation. Mol. Cell Biol. 2007, 27, 3769–3779, doi:10.1128/MCB.01432-06.
[67]  Surface, L.E.; Thornton, S.R.; Boyer, L.A. Polycomb group proteinsset the stage for early lineage commitment. Cell Stem. Cell 2010, 7, 288–298, doi:10.1016/j.stem.2010.08.004.
[68]  Aldiri, I.; Vetter, M.L. PRC2 during vertebrate organogenesis: A complex in transition. Dev. Biol. 2012, 367, 91–99, doi:10.1016/j.ydbio.2012.04.030.
[69]  Studach, L.L.; Menne, S.; Cairo, S.; Buendia, M.A.; Hullinger, R.L.; Lefran?ois, L.; Merle, P.; Andrisani, O.M. A subset of Suz12/PRC2 target genes is activated during hepatitis B virus replication and liver carcinogenesis associated with hepatitis B virus X protein. Hepatology 2012, 56, 1240–1251, doi:10.1002/hep.25781.
[70]  Andrisani, O.M.; Studach, L.; Merle, P. Gene signatures in hepatocellular carcinoma (HCC). Semin. Cancer Biol. 2001, 21, 4–9, doi:10.1016/j.semcancer.2010.09.002.
[71]  Yamashita, T.; Ji, J.; Budhu, A.; Forgues, M.; Yang, W.; Wang, H.Y.; Jia, H.; Ye, Q.; Qin, L.X.; Wauthier, E.; et al. EpCAM-positive hepatocellular carcinoma cells are tumor initiating cells with stem/progenitor cell features. Gastroenterology 2009, 136, 1012–1024, doi:10.1053/j.gastro.2008.12.004.
[72]  Khalil, A.M.; Guttman, M.; Huarte, M.; Garber, M.; Raj, A.; Rivea Morales, D.; Thomas, K.; Presser, A.; Bernstein, B.E.; van Oudenaarden, A.; et al. Many human large intergenic non-coding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 2009, 106, 11667–116672, doi:10.1073/pnas.0904715106.
[73]  Zhao, J.; Ohsumi, T.K.; Kung, J.T.; Ogawa, Y.; Grau, D.J.; Sarma, K.; Song, J.J.; Kingston, R.E.; Borowsky, M. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 2010, 40, 939–953, doi:10.1016/j.molcel.2010.12.011.
[74]  Toffanin, S.; Hishida, Y.; Lachenmayer, A.; Villanueva, A.; Cabellos, L.; Minguez, B.; Savic, R.; Ward, S.C.; Thung, S.; Chiang, D.Y.; et al. MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a. Gastroenterology 2011, 140, 1618–1628, doi:10.1053/j.gastro.2011.02.009.
[75]  Iliopoulos, D.; Lindahl-Allen, M.; Polytarchou, C.; Hirsch, H.A.; Tsichlis, P.N.; Struhl, K. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol. Cell 2010, 39, 761–772, doi:10.1016/j.molcel.2010.08.013.
[76]  Svotelis, A.; Bianco, S.; Matore, J.; Huppé, G.; Nordell-Markovits, A.; Mes-Masson, A.M.; Gévry, N. H3K27 demethylation by JMJD3 at a poised enhancer of anti-apoptotic gene BCL2 determines ERα ligand dependency. EMBO J. 2011, 30, 3947–3961, doi:10.1038/emboj.2011.284.
[77]  Pasini, D.; Cloos, P.A.; Walfridsson, J.; Olsson, L.; Bukowski, J.P.; Johansen, J.V.; Bak, M.; Tommerup, N.; Rappsilber, J.; Helin, K. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 2010, 464, 306–310.
[78]  Anderton, J.A.; Bose, S.; Vockerodt, M.; Vrzalikova, K.; Wei, W.; Kuo, M.; Helin, K.; Christensen, J.; Rowe, M.; Murray, P.G.; et al. The H3K27me3 demethylase, KDM6B, is induced by Epstein-Barr virus and over-expressed in Hodgkin's Lymphoma. Oncogene 2011, 30, 2037–2043, doi:10.1038/onc.2010.579.
[79]  Beausoleil, S.A.; Jedrychowski, M.; Schwartz, D.; Elias, J.E.; Villén, J.; Li, J.; Cohn, M.A.; Cantley, L.C.; Gygi, S.P. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 2004, 101, 12130–12135, doi:10.1073/pnas.0404720101.
[80]  Tsai, M.C.; Manor, O.; Wan, Y.; Mosammaparast, N.; Wang, J.K.; Lan, F.; Shi, Y.; Segal, E.; Chang, H.Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010, 329, 689–693, doi:10.1126/science.1192002.
[81]  Bernstein, B.E.; Mekkelsen, T.S.; Zie, X.; Kamal, M.; Huebert, D.J.; Cuff, J.; Fry, B.; Meissner, A.; Wernig, M.; Plath, K.; et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006, 125, 315–326, doi:10.1016/j.cell.2006.02.041.
[82]  Brown, D.D. The role of stable complexes that repress and activate eukaryotic genes. Philos Trans. R. Soc. Lond. B Biol. Sci. 1984, 307, 297–299, doi:10.1098/rstb.1984.0130.
[83]  Petruk, S.; Sedkov, Y.; Johnston, D.M.; Hodgson, J.W.; Black, K.L.; Kovermann, S.K.; Beck, S.; Canaani, E.; Brock, H.W.; Mazo, A. TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 2012, 150, 922–933, doi:10.1016/j.cell.2012.06.046.
[84]  Deb-Rinker, P.; Ly, D.; Jezierski, A.; Sikorska, M.; Walker, P.R. Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J. Biol. Chem. 2005, 280, 6257–6260.
[85]  Meissner, A.; Mikkelsen, T.S.; Gu, H.; Wernig, M.; Hanna, J.; Sivachenko, A.; Zhang, X.; Bernstein, B.E.; Nusbaum, C.; Jaffe, D.B.; et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008, 454, 766–770.
[86]  Mohn, F.; Weber, M.; Rebhan, M.; Roloff, T.C.; Richter, J.; Stadler, M.B.; Bibel, M.; Schübeler, D. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 2008, 30, 755–766, doi:10.1016/j.molcel.2008.05.007.
[87]  Hawkins, R.D.; Hon, G.C.; Lee, L.K.; Ngo, Q.; Lister, R.; Pelizzola, M.; Edsall, L.E.; Kuan, S.; Luu, Y.; Klugman, S.; et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell. Stem Cell. 2010, 6, 479–491, doi:10.1016/j.stem.2010.03.018.
[88]  Brunner, A.L.; Johnson, D.S.; Kim, S.W.; Valouev, A.; Reddy, T.E.; Neff, N.F.; Anton, E.; Medina, C.; Nguyen, L.; Chiao, E.; et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 2009, 19, 1044–1056, doi:10.1101/gr.088773.108.
[89]  Park, I.Y.; Sohn, B.H.; Yu, E.; Suh, D.J.; Chung, Y.H.; Lee, J.H.; Surzycki, S.J.; Lee, Y.I. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology 2007, 132, 1476–1494, doi:10.1053/j.gastro.2007.01.034.
[90]  Zheng, D.L.; Zhang, L.; Cheng, N.; Xu, X.; Deng, Q.; Teng, X.M.; Wang, K.S.; Zhang, X.; Huang, J.; Han, Z.G. Epigeneticmodificationinduced by hepatitis B virus X protein via interaction with de novo DNA methyltransferase DNMT3A. J. Hepatol. 2009, 50, 377–387, doi:10.1016/j.jhep.2008.10.019.
[91]  Jung, K.J.; Arora, P.; Pagano, J.S.; Jang, K.L. Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1pathway. Cancer Res. 2007, 67, 5771–5778, doi:10.1158/0008-5472.CAN-07-0529.
[92]  Chen, T.; Li, E. Structure and function of eukaryotic DNA methyltransferases. Curr. Top. Dev. Biol. 2004, 60, 55–89, doi:10.1016/S0070-2153(04)60003-2.
[93]  Vivekanandan, P.; Daniel, H.D.; Kannangai, R.; Martinez-Murillo, F.; Torbenson, M. Hepatitis B virus replication induces methylation of both host and viral DNA. J. Virol. 2010, 84, 4321–4329, doi:10.1128/JVI.02280-09.
[94]  Vivekanandan, P.; Thomas, D.; Torbenson, M. Hepatitis B viralDNA is methylated in liver tissues. J. Viral Hepat. 2008, 15, 103–107.
[95]  Vivekanandan, P.; Thomas, D.; Torbenson, M. Methylation regulates hepatitis B viral protein expression. J. Infect. Dis. 2009, 199, 1286–1291, doi:10.1086/597614.
[96]  Akalin, A.; Garrett-Bakelman, F.E.; Kormaksson, M.; Busuttil, J.; Zhang, L.; Khrebtukova, I.; Milne, T.A.; Huang, Y.; Biswas, D.; Hess, J.L.; et al. Base-pairresolutionDNA methylationsequencingreveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet. 2012, 8, e1002781.
[97]  Quasdorff, M.; H?sel, M.; Odenthal, M.; Zedler, U.; Bohne, F.; Gripon, P.; Dienes, H.P.; Drebber, U.; Stippel, D.; Goeser, T.; et al. A concerted action of HNF4alpha and HNF1alpha links hepatitis B virus replication to hepatocyte differentiation. Cell Microbiol. 2008, 10, 1478–1490, doi:10.1111/j.1462-5822.2008.01141.x.
[98]  Polo, J.M.; Anderssen, E.; Walsh, R.M.; Schwarz, B.A.; Nefzger, C.M.; Lim, S.M.; Borkent, M.; Apostolou, E.; Alaei, S.; Cloutier, J.; et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 2012, 151, 1617–1632, doi:10.1016/j.cell.2012.11.039.


comments powered by Disqus