全部 标题 作者
关键词 摘要

Agriculture  2013 

Current Limitations in the Control and Spread of Ticks that Affect Livestock: A Review

DOI: 10.3390/agriculture3020221

Keywords: ticks, domestic animals, climate, spread, control strategies

Full-Text   Cite this paper   Add to My Lib


Ticks are well-known parasites that affect livestock productivity. This paper reviews the current knowledge regarding the spread of ticks with their impact in animal health and the limitations to achieve effective control measures. The forecasted trends in climate play an obvious role in promoting the spread of ticks in several regions. It appears that climate warming is pivotal in the spread and colonization of new territories by Rhipicephalus microplus in several regions of Africa. The reported increase in altitude of this tick species in the mountainous regions of Central and South America appears to be driven by such general trends in climate change. This factor, however, is not the only single contributor to the spread of ticks. The poor management of farms, uncontrolled movements of domestic animals, abundance of wild animals, and absence of an adequate framework to capture the ecological plasticity of certain ticks may explain the complexity of the control measures. In this paper, we review several details regarding the relationships of ticks with the environment, wild fauna and competition with other species of ticks. Our intention is to highlight these relationships with the aim to produce a coherent framework to explore tick ecology and its relationship with animal production systems.


[1]  De Castro, J.J.; James, A.D.; Minjauw, B.; DiGiulio, G.; Permin, A.; Pegram, R.G.; Chizyuka, H.G.B.; Sinyangwe, P. Long-term studies on the economic impact of ticks on Sanga cattle in Zambia. Exp. Appl. Acarol. 1997, 21, 3–19.
[2]  Young, A.S.; Groocock, C.M.; Kariuki, D.P. Integrated control of ticks and tick-borne diseases of cattle in Africa. Parasitology 1988, 96, 403–432, doi:10.1017/S0031182000058388.
[3]  Seebeck, R.M.; Springell, P.H.; O’Kelly, J.C. Alterations in host metabolism by the specific and anorectic effects of the cattle tick (Boophilus microplus) I: Food intake and body weight growth. Australian J. of Biol. Sci. 1971, 24, 373–380.
[4]  Sutherst, R.W.; Maywald, G.F.; Kerr, J.D.; Stegeman, D.A. The effect of cattle tick (Boophilus microplus) on the growth of Bos indicus × B. taurus steers. Crop Pasture Sci. 1983, 34, 317–327, doi:10.1071/AR9830317.
[5]  Jonsson, N.N. The productivity effects of cattle tick (Boophilus microplus) infestation on cattle, with particular reference to Bos indicus cattle and their crosses. Vet. Parasitol. 2006, 137, 1–10, doi:10.1016/j.vetpar.2006.01.010.
[6]  Norval, R.A.I.; Sutherst, R.W.; Kurki, J.; Gibson, J.D.; Kerr, J.D. The effect of the brown ear-tick Rhipicephalus appendiculatus on the growth of Sanga and European breed cattle. Vet. Parasitol. 1988, 30, 149–164, doi:10.1016/0304-4017(88)90162-8.
[7]  Pegram, R.G.; Wilson, D.D.; Hansen, J.W. Past and present national tick control programs: why they succeed or fail. Ann. New York Acad. Sci. 2000, 916, 546–554, doi:10.1111/j.1749-6632.2000.tb05334.x.
[8]  Spath, E.J.A.; Guglielmone, A.A.; Signorini, A.R.; Mangold, A.J. Estimación de las pérdidas económicas directas producidas por la garrapata Boophilus microplus y las enfermedades asociadas en la Argentina. Therios: revista de Medicina veterinaria y Producción Animal 1984, 23, 341–360.
[9]  Willadsen, P. Ticks control: Thoughts on a research agenda. Vet. Parasitol. 2006, 138, 161–168, doi:10.1016/j.vetpar.2006.01.050.
[10]  Estrada-Pe?a, A.; Venzal, J.M. Climate niches of tick species in the Mediterranean region: Modeling of occurrence data, distributional constraints, and impact of climate change. Med. Vet. Entomol. 2007, 44, 1130–1138, doi:10.1603/0022-2585(2007)44[1130:CNOTSI]2.0.CO;2.
[11]  Olwoch, J.M.; Van Jaarsveld, A.S.; Scholtz, C.H.; Horak, I. Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa. Onderstepoort J. Vet. Res. 2010, 74, 45–72.
[12]  De Clercq, E.; Vanwambeke, S.O.; Sungirai, M.; Adehan, S.; Lokossou, R.; Madder, M. Geographic distribution of the invasive cattle tick Rhipicephalus microplus, a country-wide survey in Benin. Exp. Appl. Acarol. 2012, 58, 441–452, doi:10.1007/s10493-012-9587-0.
[13]  Madder, M.; Adehan, S.; De Deken, R.; Lokossou, R. New foci of Rhipicephalus microplus in West Africa. Exp. Appl. Acarol. 2012, 56, 385–390, doi:10.1007/s10493-012-9522-4.
[14]  Keirans, J.E.; Durdeen, L.E. Invasion: Exotic Ticks (Acari: Argasidae, Ixodidae) Imported into the United States. A Review and New Records. J. Med. Entomol. 2001, 38, 850–861, doi:10.1603/0022-2585-38.6.850.
[15]  Burridge, M.J. Non-Native and Invasive Ticks: Threats to Human and Animal Health in the United States; University Press of Florida: Gainesville, FL, USA, 2011.
[16]  Burridge, M.J.; Simmons, L.A.; Allan, S.A. Introduction of potential heartwater vectors and other exotic ticks into Florida on imported reptiles. J. Parasitol. 2000, 86, 700–704.
[17]  Dobson, A. Climate variability, global change, immunity and the dynamics of infectious diseases. Ecology 2009, 90, 920–927, doi:10.1890/08-0736.1.
[18]  Fish, D. Why we do not understand the ecological connections between the environment and human health: The case for vector-borne disease. In Vector-Borne Diseases: Understanding the Environmental, Human Health and Ecological Connections; The National Academies Press, Institute of Medicine: Washington, DC, USA, 2008; pp. 65–69.
[19]  Gould, E.A.; Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. R. Soc. Trop. Med. Hyg. 2009, 103, 109–121, doi:10.1016/j.trstmh.2008.07.025.
[20]  Gould, E.A.; Higgs, S.; Buckley, A.; Gritsun, T.S. Potential arbovirus emergence and implications for the United Kingdom. Emerg. Infect. Dis. 2006, 12, 549–555, doi:10.3201/eid1204.051010.
[21]  Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res. 2002, 33, 330–342, doi:10.1016/S0188-4409(02)00378-8.
[22]  Gubler, D.J. The global threat of emergent/reemergent diseases. In Vector-Borne Diseases: Understanding the Environmental, Human Health and Ecological Connections; The National Academies Press: Institute of Medicine: Washington, DC, USA, 2008; pp. 43–64.
[23]  Gubler, D.J.; Reiter, P.; Kristie, L.E.; Yap, W.; Nasci, R.; Patz, J.A. Climate variability and change in the United States: Potential impacts on vector- and rodent-borne diseases. Environ. Health Persp. 2001, 109, 223–233, doi:10.2307/3435012.
[24]  Lafferty, K.D. The ecology of climate change and infectious diseases. Ecology 2009, 90, 888–900, doi:10.1890/08-0079.1.
[25]  Randolph, S.E. Perspectives on climate change impacts on infectious diseases. Ecology 2009, 90, 927–931, doi:10.1890/08-0506.1.
[26]  Reiter, P. Climate change and mosquito-borne disease. Environ. Health Persp. 2001, 109, 141–161.
[27]  Reiter, P.; Thomas, C.J.; Atkinson, P.M.; Hay, S.I.; Randolph, S.E.; Rogers, D.J.; Shanks, D.G.; Snow, R.W.; Spielman, A. Global warming and malaria: a call for accuracy. Lancet 2004, 4, 323–324.
[28]  Russell, R.C. Mosquito-borne arboviruses in Australia: the current scene and implications of climate change for human health. Int. J. Parasitol. 1998, 28, 955–969, doi:10.1016/S0020-7519(98)00053-8.
[29]  Sutherst, R.W. Global change and human vulnerability to vector-borne diseases. Clin. Microbiol. Rev. 2004, 17, 136–173, doi:10.1128/CMR.17.1.136-173.2004.
[30]  Sonenshine, D.E.; Kocan, K.M.; de la Fuente, J. Tick control: Further thoughts on a research agenda. Trends Parasitol. 2006, 22, 550–551, doi:10.1016/j.pt.2006.09.003.
[31]  Pérez de León, A.A.; Teel, P.D.; Auclair, A.N.; Messenger, M.T.; Guerrero, F.D.; Schuster, G.; Miller, R.J. Integrated strategy for sustainable cattle fever tick eradication in USA is required to mitigate the impact of global change. Front Physiol. 2012, 3, 195.
[32]  Walker, A.R. Eradication and control of livestock ticks: Biological, economic and social perspectives. Parasitology 2011, 138, 945–959, doi:10.1017/S0031182011000709.
[33]  Ervin, T.R.; Epplin, F.M.; Byford, R.L.; Hair, J.A. Estimation and economic implications of lone star tick (Acari: Ixodidae) infestation on weight gain of cattle, Bos taurus and Bos taurus × Bos indicus. J. Econ. Entomol. 1987, 80, 443–445.
[34]  Perry, B.D.; Randolph, T.F.; McDermott, J.J.; Sones, K.R.; Thornton, P.K. Investing in Animal Health Research to Alleviate Poverty; International Livestock Research Institute: Nairobi, Kenya, 2002.
[35]  Jongejan, F.; Uilenberg, G. The global importance of ticks. Parasitology 2004, 129, S3–S14, doi:10.1017/S0031182004005967.
[36]  Kivaria, F.M. Estimated direct economic costs associated with ticks-borne diseases on cattle in Tanzania. Trop. Anim. Health Prod. J. 2006, 38, 291–299, doi:10.1007/s11250-006-4181-2.
[37]  Lawrence, J.A.; McCosker, P.J. Economics of Theileriosis control: Appraisal and future perspectives. In Advances in the Control of Theileriosis; Irvin, A., Ed.; Martinus Nijhoff Publishers: The Hague, The Netherlands, 1981; Volume 14, pp. 419–422.
[38]  Mukhebi, A.W.; Chamboko, T.; O’Callaghan, C.J.; Peter, T.F.; Kruska, R.L.; Medley, G.F.; Mahan, S.M.; Perry, B.D. An assessment of the economic impact of heartwater (Cowdria ruminantium infection) and its control in Zimbabwe. Prev. Vet. Med. 1999, 39, 173–189, doi:10.1016/S0167-5877(98)00143-3.
[39]  Kocan, K.M.; de la Fuente, J.; Blouin, E.F.; García-García, J.C. Anaplasma marginale (Rickettsiales: Anaplasmataceae): Recent advances in defining host–pathogen adaptations of a tick-borne rickettsia. Parasitology 2004, 129, S285–S300, doi:10.1017/S0031182003004700.
[40]  Estrada-Pe?a, A.; Farkas, R.; Jaenson, T.G.T.; Koenen, K.; Madder, M.; Pascucci, I.; Salman, M.; Tarrés-Call, J.; Jongejan, F. Association of environmental traits with the geographic ranges of ticks (Acari: Ixodidae) of medical and veterinary importance in the western Palearctic. A digital data set. Exp. Appl. Acarol. 2013, 59, 351–366, doi:10.1007/s10493-012-9600-7.
[41]  Estrada-Pe?a, A.; Estrada-Sánchez, A.; Estrada-Sánchez, D. Occurrence Patterns of Afrotropical ticks (Acari: Ixodidae) in the climate space are not correlated with their taxonomic relationships. PLoS One 2012, 7, e36976.
[42]  Tabachnick, W.J. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J. Exp. Biol. 2010, 213, 946–954, doi:10.1242/jeb.037564.
[43]  Kearney, M.; Porter, W.P.; Williams, C.; Ritchie, S.; Hoffmann, A.A. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 2009, 23, 528–538, doi:10.1111/j.1365-2435.2008.01538.x.
[44]  Jongejan, F.; Pegram, R.G.; Zivkovic, D.; Hensen, E.J.; Mwase, E.T.; Thielemans, M.J.C.; Cosse, A.; Niewold, T.A.; Elsaid, A.; Uilenberg, G. Monitoring of naturally acquired and artificially induced immunity to Amblyomma variegatum and Rhipicephalus appendiculatus ticks under field and laboratory conditions. Exp. Appl. Acarol. 1989, 7, 181–199, doi:10.1007/BF01194059.
[45]  Sserugga, J.N.; Jonsson, N.N.; Bock, R.E.; More, S.J. Serological evidence of exposure to tick fever organisms in young cattle on Queensland dairy farms. Australian Vet. J. 2003, 81, 147–152, doi:10.1111/j.1751-0813.2003.tb11077.x.
[46]  De la Fuente, J.; Almazan, C.; Canales, M.; Perez de la Lastra, J.M.; Kocan, K.M.; Willadsen, P. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim. Health Res. Rev. 2007, 8, 23–28, doi:10.1017/S1466252307001193.
[47]  Lohmeyer, K.H.; Pound, J.M.; May, M.A.; Kammlah, D.M.; Davey, R.B. Distribution of Rhipicephalus (Boophilus) microplus and Rhipicephalus (Boophilus) annulatus (Acari: Ixodidae) Infestations Detected in the United States Along the Texas/Mexico Border. J. Med. Entomol. 2011, 48, 770–774, doi:10.1603/ME10209.
[48]  Graham, O.H.; Price, M.A.; Trevino, J.L. Cross-mating experiments with Boophilus annulatus and B. microplus (Acarina: Ixodidae). J. Med. Entomol. 1972, 9, 531–537.
[49]  Estrada-Pe?a, A.; Acedo, C.S.; Quílez, J.; Del Cacho, E. A retrospective study of climatic suitability for the tick Rhipicephalus (Boophilus) microplus in the Americas. Global Ecol. Biogeog. 2005, 14, 565–573, doi:10.1111/j.1466-822X.2005.00185.x.
[50]  Estrada-Pe?a, A.; Corson, M.; Venzal, J.M.; Mangold, A.; Guglielmone, A.A. Changes in climate and habitat suitability for the cattle tick Boophilus microplus in its southern Neotropical distribution range. J. Vector Ecol. 2006, 31, 158–167, doi:10.3376/1081-1710(2006)31[158:CICAHS]2.0.CO;2.
[51]  Corson, M.S.; Teel, P.D.; Grant, W.E. Microclimate influence in a physiological model of cattle-fever tick (Boophilus spp.) population dynamics. Ecol. Modelling 2004, 180, 487–514, doi:10.1016/j.ecolmodel.2004.04.034.
[52]  Teel, P.D.; Corson, M.S.; Grant, W.E.; Longnecker, M.T. Simulating biophysical and human factors that affect detection probability of cattle-fever ticks (Boophilus spp.) in semi-arid thornshrublands of South Texas. Ecol. Modelling 2003, 170, 29–43, doi:10.1016/j.ecolmodel.2003.05.002.
[53]  George, J.E. Wildlife as a constraint to the eradication of Boophilus spp. (Acari: Ixodidae). J. Agric. Entomol. 1990, 7, 119–125.
[54]  Kistner, T.P.; Hayes, F.A. White-tailed deer as hosts of cattle fever ticks. J. Wildl. Dis. 1970, 6, 437–440.
[55]  Graham, O.H.; Hourrigan, J.L. Eradication programs for the arthropod parasites of livestock. J. Med. Entomol. 1977, 13, 629–658.
[56]  Gray, J.H.; Payne, R.L.; Schubert, G.O.; Garnett, W.H. Implication of white-tailed deer in the Boophilus annulatus tick eradication program. Proc. Annu. Meet. U.S. Anim. Health. Assoc. 1979, 83, 506–515.
[57]  Pound, J.M.; George, J.E.; Kammlah, D.M.; Lohmeyer, K.H.; Davey, R.B. Evidence for Role of White-Tailed Deer (Artiodactyla: Cervidae) in Epizootiology of Cattle Ticks and Southern Cattle Ticks (Acari: Ixodidae) in Reinfestations Along the Texas/Mexico Border in South Texas: A Review and Update. J. Econ. Entomol. 2010, 103, 211–218.
[58]  Estrada-Pe?a, A.; Venzal, J.M.; Nava, S.; Mangold, A.; Guglielmone, A.A.; Labruna, M.B.; de la Fuente, J. Reinstatement of Rhipicephalus (Boophilus) australis (Acari: Ixodidae) with redescription of the adult and larval stages. J. Med. Entomol. 2012, 49, 794–802, doi:10.1603/ME11223.
[59]  Lynen, G.; Zeman, P.; Bakuname, C.; Guilio, G.; Mtui, P.; Sanka, P.; Jongejan, F. Shifts in the distributional ranges of Boophilus ticks in Tanzania: evidence that a parapatric boundary between Boophilus microplus and B. decoloratus follows climate gradients. Exp. Appl. Acarol. 2008, 44, 147–164, doi:10.1007/s10493-008-9134-1.
[60]  T?nnesen, M.H.; Penzhorn, B.L.; Bryson, N.R.; Stoltsz, W.H.; Masibigiri, T. Displacement of Boophilus decoloratus by Boophilus microplus in the Soutpansberg region, Limpopo Province, South Africa. Exp. Appl. Acarol. 2004, 32, 199–209, doi:10.1023/B:APPA.0000021789.44411.b5.
[61]  Theiler, G. The Ixodoidea Parasites of Vertebrates in Africa South of the Sahara; Veterinary Services: Onderstepoort, South Africa, 1962.
[62]  Norval, R.A.I.; Sutherst, R.W. Assortative mating between Boophilus decoloratus and Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 1986, 23, 459–460.
[63]  Hilburn, L.R.; Davey, R.B. Test for assortative mating between Boophilus microplus and Boophilus annulatus (Acari: Ixodidae). J. Med. Entomol. 1992, 29, 690–697.
[64]  Zeman, P.; Lynen, G. Conditions for stable parapatric coexistence between Boophilus decoloratus and B. microplus ticks: A simulation study using the competitive Lotka-Volterra model. Exp. Appl. Acarol. 2010, 52, 409–426.
[65]  Madder, M.; Thys, E.; Geysen, D.; Baudoux, C.; Horak, I. Boophilus microplus ticks found in West Africa. Exp. Appl. Acarol. 2007, 43, 233–234, doi:10.1007/s10493-007-9110-1.
[66]  Uilenberg, G.; Barre, N.; Camus, E.; Burridge, M.J.; Garris, G.I. Heartwater in the Caribbean. Prev. Vet. Med. 1984, 2, 255–267, doi:10.1016/0167-5877(84)90068-0.
[67]  Bram, R.A.; George, J.E. Introduction of nonindigenous arthropod pests of animals. J. Med. Entomol. 2000, 37, 1–8, doi:10.1603/0022-2585-37.1.1.
[68]  Bram, R.A.; George, J.E.; Reichard, R.E.; Tabachnick, W.J. Threat of foreign arthropod-borne pathogens to livestock in the United States. J. Med. Entomol. 2002, 39, 405–416, doi:10.1603/0022-2585-39.3.405.
[69]  Pegram, R.G.; Indar, L.; Eddi, C.; George, J. The Caribbean Amblyomma Program: some ecologic factors affecting its success. Ann. New York Acad. Sci. 2004, 1026, 302–311.
[70]  Pegram, R.G. Thirteen Years of Hell in Paradise: An Account of the Caribbean Amblyomma Programme; Trafford Publishing: Bloomington, IN, USA, 2010.
[71]  Estrada-Pe?a, A.; Pegram, R.; Barré, N.; Venzal, J.M. Using invaded range data to model the climate suitability for Amblyomma variegatum (Acari: Ixodidae) in the New World. Exp. App. Acarol. 2007, 41, 203–214, doi:10.1007/s10493-007-9050-9.
[72]  Beati, L.; Patel, J.; Lucas-Williams, H.; Adakal, H.; Kanduma, E.G.; Tembo-Mwase, E.; Krecek, R.; Mertins, J.W.; Alfred, J.T.; Kelly, S.; et al. Phylogeography and demographic history of Amblyomma variegatum (Fabricius) (Acari: Ixodidae), the Tropical Bont Tick. Vector-Borne Zoonotic Dis. 2012, 12, 514–525, doi:10.1089/vbz.2011.0859.


comments powered by Disqus