全部 标题 作者
关键词 摘要

Agriculture  2013 

Sample Size Requirements for Assessing Statistical Moments of Simulated Crop Yield Distributions

DOI: 10.3390/agriculture3020210

Keywords: crop yield distributions, statistical moments, sample sizes requirements, crop models, stochastic weather generator, climate change

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mechanistic crop growth models are becoming increasingly important in agricultural research and are extensively used in climate change impact assessments. In such studies, statistics of crop yields are usually evaluated without the explicit consideration of sample size requirements. The purpose of this paper was to identify minimum sample sizes for the estimation of average, standard deviation and skewness of maize and winterwheat yields based on simulations carried out under a range of climate and soil conditions. Our results indicate that 15 years of simulated crop yields are sufficient to estimate average crop yields with a relative error of less than 10% at 95% confidence. Regarding standard deviation and skewness, sample size requirements depend on the degree of symmetry of the underlying population’s distribution. For symmetric distributions, samples of 200 and 1500 yield observations are needed to estimate the crop yields’ standard deviation and skewness coefficient, respectively. Higher degrees of asymmetry increase the sample size requirements relative to the estimation of the standard deviation, while at the same time the sample size requirements relative to the skewness coefficient are decreased.

References

[1]  Jalota, S.K.; Sood, A.; Vitale, J.D.; Srinivasan, R. Simulated crop yields response to irrigation water and economic analysis. Agron. J. 2007, 99, 1073–1084.
[2]  Hoogenboom, G. Contribution of agrometeorology to the simulation of crop production and its applications. Agric. For. Meteorol. 2000, 103, 137–157, doi:10.1016/S0168-1923(00)00108-8.
[3]  Sinclair, T.R.; Hammer, G.L.; van Oosterom, E.J. Potential yield and water-use effficiency benefits in sorghum from limited maximum transpiration rate. Funct. Plant Biol. 2005, 32, 945–952, doi:10.1071/FP05047.
[4]  Sinclair, T.R.; Messina, C.D.; Beatty, A.; Samples, M. Assessment across the United States of the benefits of altered soybean drought traits. Agron. J. 2010, 102, 475–482, doi:10.2134/agronj2009.0195.
[5]  Tubiello, F.N.; Donatelli, M.; Rosenzweig, C.; Stockle, C.O. Effects of climate change and elevated CO2 on cropping systems: Model predictions at two Italian locations. Eur. J. Agron. 2000, 13, 179–189, doi:10.1016/S1161-0301(00)00073-3.
[6]  Donatelli, M.; Tubiello, F.; Peruch, U.; Rosenzweig, C. Impacts of climate change and elevated CO2 on sugar beet production in northern and central italy. Ital. J. Agron. 2002, 6, 133–142.
[7]  Challinor, A.J.; Wheeler, T.R.; Craufurd, P.Q.; Slingo, J.M.; Grimes, D.I.F. Design and optimisation of a large-area process-based model for annual crops. Agric. For. Meteorol. 2004, 124, 99–120, doi:10.1016/j.agrformet.2004.01.002.
[8]  Torriani, D.S.; Calanca, P.; Schmid, S.; Beniston, M.; Fuhrer, J. Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Climate Res. 2007, 34, 59–69, doi:10.3354/cr034059.
[9]  Finger, R.; Hediger, W.; Schmid, S. Irrigation as adaptation strategy to climate change—A biophysical and economic appraisal for Swiss maize production. Clim. Change 2011, 105, 509–528, doi:10.1007/s10584-010-9931-5.
[10]  Finger, R.; Lazzarotto, P.; Calanca, P. Bio-economic assessment of climate change impacts on managed grassland production. Agric. Syst. 2010, 103, 666–674, doi:10.1016/j.agsy.2010.08.005.
[11]  Lehmann, N.; Finger, R.; Klein, T.; Calanca, P.; Walter, A. Adapting crop management practices to climate change: Modeling optimal solutions at the field scale. Agric. Syst. 2013, 117, 55–65, doi:10.1016/j.agsy.2012.12.011.
[12]  Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M. Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: Irrigation and nitrogen fertilization. Reg. Environ. Change 2012, 12, 407–419, doi:10.1007/s10113-011-0256-3.
[13]  Jame, Y.W.; Cutforth, H.W. Crop growth models for decision support systems. Can. J. Plant Sci. 1996, 76, 9–19, doi:10.4141/cjps96-003.
[14]  Apipattanavis, S.; Bert, F.; Podesta, G.; Rajagopalan, B. Linking weather generators and crop models for assessment of climate forecast outcomes. Agric. For. Meteorol. 2010, 150, 166–174, doi:10.1016/j.agrformet.2009.09.012.
[15]  Liu, J.G.; Williams, J.R.; Zehnder, A.J.B.; Yang, H. GEPIC—Modelling wheat yield and crop water productivity with high resolution on a global scale. Agric. Syst. 2007, 94, 478–493, doi:10.1016/j.agsy.2006.11.019.
[16]  Royce, R.S.; Jones, J.W.; Hansen, J.W. Model-based optimization of crop management for climate forecast application. Trans. ASAE 2001, 44, 1319–1327.
[17]  Cochran, W.G. Sampling Techniques; John Wiley and Sons: New York, NY, USA, 1977.
[18]  Noether, G.E. Sample size determination for some common nonparametric tests. J. Am. Stat. Assoc. 1987, 82, 645–647, doi:10.1080/01621459.1987.10478478.
[19]  Adcock, C.J. Sample size determination: A review. J. R. Stat. Soc. 1997, 46, 261–283.
[20]  Marco, M.; Bindi, M.; Lugeri, N. Modelling yield distribution as affect by extreme events. IOP Conf. Ser. Earth Environ. Sci. 2009, 6, 022011, doi:10.1088/1755-1307/6/2/022011.
[21]  Tingem, M.; Rivington, M.; Bellocchi, G.; Colls, J. Crop yield model validation for Cameroon. Theor. Appl. Climatol. 2009, 96, 275–280, doi:10.1007/s00704-008-0030-8.
[22]  Thornton, P.K.; Jones, P.G.; Alagarswamy, G.; Andresen, J. Spatial variation of crop yield response to climate change in East Africa. Glob. Environ. Change Hum. Policy Dimens. 2009, 19, 54–65, doi:10.1016/j.gloenvcha.2008.08.005.
[23]  Finger, R.; Calanca, P. Risk management strategies to cope with climate change in grassland production: An illustrative case study for the Swiss plateau. Reg. Environ. Change 2011, 11, 935–949, doi:10.1007/s10113-011-0234-9.
[24]  Kapphan, I.; Calanca, P.; Holzkaemper, A. Climate change, weather insurance design and hedging effectiveness. Geneva Pap. Risk Insur. Issues Pract. 2012, 37, 286–317, doi:10.1057/gpp.2012.8.
[25]  Thompson, W.A.; Endriss, J. The required sample size when estimating variances. Am. Stat. 1961, 15, 22–23.
[26]  Harri, A.; Erdem, C.; Coble, K.H.; Knight, T.O. Crop yield distributions: A reconciliation of previous research and statistical tests for normality. Rev. Agric. Econ. 2009, 31, 163–182, doi:10.1111/j.1467-9353.2008.01431.x.
[27]  Groom, B.; Koundouri, P.; Nauges, C.; Thomas, A. The story of the moment: Risk averse cypriot farmers respond to drought management. Appl. Econ. 2008, 40, 315–326, doi:10.1080/00036840600592916.
[28]  St?ckle, C.O.; Donatelli, M.; Nelson, R. CropSyst, a cropping systems simulation model. Eur. J. Agron. 2003, 18, 289–307, doi:10.1016/S1161-0301(02)00109-0.
[29]  Richards, R.A. Defining selection criteria to improve yield under drought. Plant Growth Regul. 1996, 20, 157–166, doi:10.1007/BF00024012.
[30]  Delcourt, G.; van Kooten, G.C. How resilient is grain production to climatic change? J. Sustain. Agric. 1995, 5, 37–57, doi:10.1300/J064v05n03_05.
[31]  Klein, T.; Calanca, P.; Holzkamper, A.; Lehmann, N.; Roesch, A.; Fuhrer, J. Using farm accountancy data to calibrate a crop model for climate impact studies. Agric. Syst. 2012, 111, 23–33, doi:10.1016/j.agsy.2012.05.001.
[32]  Amaudruz, M.; Morier, R.; Zimmermann, A.; Weyermann, I.; Hauser, S.; Schüpbach, H.; Uebersax, A.; Santschi, M.; Kessler, V.; Nyffenegger, L. Wegleitung Suisse-Bilanz; Federal Office for Agriculture (BLW) and AGRIDEA: Eschikon, Switzerland, 2011.
[33]  K?rner, C.; Morgan, J.; Norby, R. CO2 Fertilization: When, Where, How Much? In Terrestrial Ecosystems in a Changing World; Canadell, J., Pataki, D., Pitelka, L., Eds.; Springer: Berlin Heidelberg, Germany, 2007; pp. 9–21.
[34]  Semenov, M.A.; Brooks, R.J.; Barrow, E.M.; Richardson, C.W. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Res. 1998, 10, 95–107, doi:10.3354/cr010095.
[35]  Semenov, M.A.; Barrow, E.M. Use of a stochastic weather generator in the development of climate change scenarios. Clim. Change 1997, 35, 397–414, doi:10.1023/A:1005342632279.
[36]  Jaeger, E.B.; Anders, I.; Luthi, D.; Rockel, B.; Schar, C.; Seneviratne, S.I. Analysis of ERA40-driven CLM simulations for Europe. Meteorologische Zeitschrift 2008, 17, 349–367, doi:10.1127/0941-2948/2008/0301.
[37]  Van der Linden, P. ENSEMBLES: Climate Change and Its Impacts at Seasonal, Decadal and Centennial Timescales; Summary of Research and Results from the ENSEMBLES Project; Met Office Hadley Centre: Exter, UK, 2009.
[38]  Naki?enovi?, N.; Swart, R. Emission Scenarios. Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000.
[39]  Stein, C. A two-sample test for a linear hypothesis whose power is independent of the variance. Ann. Math. Stat. 1945, 16, 243–258, doi:10.1214/aoms/1177731088.
[40]  Desu, M.M.; Raghavarao, D. Sample Size Methodology; Academic Press: Boston, MA, USA, 1990.
[41]  Tran, T.; Coble, K.H.; Harri, A.; Barnett, B.J.; Riley, J.M. Proposed Farm Bill Impact on the Optimal Hedge Ratios for Crops. In Proceedings of Southern Agricultural Economics Association (SAEA) Annual Meeting, Orlando, FL, USA, 3–5 February 2013.

Full-Text

comments powered by Disqus