All Title Author
Keywords Abstract


Evidence for the association of the SLC22A4 and SLC22A5 genes with Type 1 Diabetes: a case control study

DOI: 10.1186/1471-2350-7-54

Full-Text   Cite this paper   Add to My Lib

Abstract:

A case-control study was performed in the Spanish population with 295 T1D patients and 508 healthy control subjects. Maximum-likelihood haplotype frequencies were estimated by applying the Expectation-Maximization (EM) algorithm implemented by the Arlequin software.When independently analyzed, one of the tested polymorphisms in the SLC22A4 gene at 1672 showed significant association with T1D in our Spanish cohort. The overall comparison of the inferred haplotypes was significantly different between patients and controls (χ2 = 10.43; p = 0.034) with one of the haplotypes showing a protective effect for T1D (rs3792876/rs1050152/rs2631367/rs274559, CCGA: OR = 0.62 (0.41–0.93); p = 0.02).The haplotype distribution in the carnitine transporter locus seems to be significantly different between T1D patients and controls; however, additional studies in independent populations would allow to confirm the role of these genes in T1D risk.Type 1 diabetes (T1D) is a multifactorial autoimmune T-cell-mediated disease resulting from selective destruction of the insulin producing β cells in the pancreatic islets, leading to an absolute insulin deficiency. The risk of developing T1D is determined by a complex interaction between multiple genetic and environmental factors. Although susceptibility to disease is strongly associated with alleles in the major histocompatibility complex (MHC) [1,2], there are more than 20 putative T1D susceptibility regions identified by linkage and association studies [3,4]. At present, several non-MHC susceptibility loci with modest genetic effects have been clearly defined. However, it is well known that many non-MHC loci predisposing to T1D remain as yet undefined [5].Type 1 diabetes is a chronic degenerative disease, with altered metabolism characterized by hyperglycemia and ketoacidosis and T1D patients depend on exogenous insulin to sustain life. The role of the carnitine system in cell metabolism is mainly known in the mitochondria, where the intera

Full-Text

comments powered by Disqus