All Title Author
Keywords Abstract

BMC Genomics  2012 

iASeq: integrative analysis of allele-specificity of protein-DNA interactions in multiple ChIP-seq datasets

DOI: 10.1186/1471-2164-13-681

Keywords: Allele-specific binding , Transcription factor , Histone modification , Data integration , Next-generation sequencing , Statistical model

Full-Text   Cite this paper   Add to My Lib


Background ChIP-seq provides new opportunities to study allele-specific protein-DNA binding (ASB). However, detecting allelic imbalance from a single ChIP-seq dataset often has low statistical power since only sequence reads mapped to heterozygote SNPs are informative for discriminating two alleles. Results We develop a new method iASeq to address this issue by jointly analyzing multiple ChIP-seq datasets. iASeq uses a Bayesian hierarchical mixture model to learn correlation patterns of allele-specificity among multiple proteins. Using the discovered correlation patterns, the model allows one to borrow information across datasets to improve detection of allelic imbalance. Application of iASeq to 77 ChIP-seq samples from 40 ENCODE datasets and 1 genomic DNA sample in GM12878 cells reveals that allele-specificity of multiple proteins are highly correlated, and demonstrates the ability of iASeq to improve allelic inference compared to analyzing each individual dataset separately. Conclusions iASeq illustrates the value of integrating multiple datasets in the allele-specificity inference and offers a new tool to better analyze ASB.


comments powered by Disqus