All Title Author
Keywords Abstract

Marine Drugs  2013 

A Therapeutic Potential for Marine Skeletal Proteins in Bone Regeneration

DOI: 10.3390/md11041203

Keywords: proteomics, bone tissue engineering, mesenchymal stem cells, marine invertebrate skeletons, bone matrix proteins

Full-Text   Cite this paper   Add to My Lib


A vital ingredient for engineering bone tissue, in the culture dish, is the use of recombinant matrix and growth proteins to help accelerate the growth of cultivated tissues into clinically acceptable quantities. The skeletal organic matrices of calcifying marine invertebrates are an untouched potential source of such growth inducing proteins. They have the advantage of being ready-made and retain the native state of the original protein. Striking evidence shows that skeleton building bone morphogenic protein-2/4 (BMP) and transforming growth factor beta (TGF-β) exist within various marine invertebrates such as, corals. Best practice mariculture and the latest innovations in long-term marine invertebrate cell cultivation can be implemented to ensure that these proteins are produced sustainably and supplied continuously. This also guarantees that coral reef habitats are not damaged during the collection of specimens. Potential proteins for bone repair, either extracted from the skeleton or derived from cultivated tissues, can be identified, evaluated and retrieved using chromatography, cell assays and proteomic methods. Due to the current evidence for bone matrix protein analogues in marine invertebrates, together with the methods established for their production and retrieval there is a genuine prospect that they can be used to regenerate living bone for potential clinical use.


[1]  Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Bone regeneration: Current concepts and future directions. BMC Med. 2011, 9, 66, doi:10.1186/1741-7015-9-66.
[2]  Romano, N.H.; Sengupta, D.; Chung, C.; Heilshorn, S.C. Protein-engineered biomaterials: Nanoscale mimics of the extracellular matrix. Biochim. Biophys. Acta 2011, 1810, 339–349, doi:10.1016/j.bbagen.2010.07.005.
[3]  Lee, K.; Silva, E.A.; Mooney, D.J. Growth factor delivery-based tissue engineering: General approaches and a review of recent developments. J. R. Soc. Interface 2011, 8, 153–170, doi:10.1098/rsif.2010.0223.
[4]  Lutolf, M.P.; Hubbell, J.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47–55, doi:10.1038/nbt1055.
[5]  Gillette, B.M.; Jensen, J.A.; Tang, B.; Yang, G.J.; Bazargan-Lari, A.; Zhong, M.; Sia, S.K. In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. Nat. Mater. 2008, 7, 636–640, doi:10.1038/nmat2203.
[6]  Geckil, H.; Xu, F.; Zhang, X.; Moon, S.; Demirci, U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine 2010, 5, 469–484, doi:10.2217/nnm.10.12.
[7]  Powell, K. It’s the ecology, stupid! Nature 2005, 435, 268–270, doi:10.1038/435268a.
[8]  Kaplan, D.L.; Moon, R.T.; Vunjak-Novakovic, G. It takes a village to grow a tissue. Nat. Biotechnol. 2005, 10, 1237–1239.
[9]  Jha, R.K.; Xu, Z.-R. Biomedical compounds from marine organisms. Mar. Drugs 2004, 2, 123–146, doi:10.3390/md203123.
[10]  Senni, K.; Pereira, J.; Gueniche, F.; Delbarre-Ladrat, C.; Sinquin, C.; Ratiskol, J.; Godeau, G.; Fischer, A.M.; Helley, D.; Colliec-Jouault, D. Marine polysaccharides: A source of bioactive molecules for cell therapy and tissue engineering. Mar. Drugs 2011, 9, 1664–1681, doi:10.3390/md9091664.
[11]  Farre, B.; Dauphin, Y. Lipids from the nacreous and prismatic layers of two Pteriomorpha Mollusc shells. Comp. Biochem. Physiol. B 2009, 152, 103–109, doi:10.1016/j.cbpb.2008.10.003.
[12]  Halvey, S. Microbiology: Applications in Food Biotechnology; Nga, B.H., Lu, Y.K., Eds.; Elsevier Applied Science Press: New York, NY, USA, 1990; pp. 123–134.
[13]  Sampath, T.K.; Rashka, K.E.; Doctor, J.S.; Tucker, R.F.; Hoffman, F.M. Drosophila transforming growth factor β superfamily proteins induce endochondral bone formation in mammals. Proc. Natl. Acad. Sci. USA 1993, 90, 6004–6008.
[14]  Harcet, M.; Roller, M.; Cetkovic, H.; Perina, D.; Wiens, M.; Muller, W.E.G.; Vlahovicek, K. Demosponge EST sequencing reveals a complex genetic toolkit of the simplest metazoans. Mol. Biol. Evol. 2010, 27, 2747–2756.
[15]  Ostrander, G.K.; Salzberg, S.L.; Downs, C.; Heidelberg, K.; Venter, J.C.; Fraser, C.M. Sequencing the Genome of the Coral, Porites lobata; National Human Genome Research Institute (NIH): Bethesda, MD, USA, 2003.
[16]  Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63, doi:10.1038/nrg2484.
[17]  Lowenstam, H.A.; Weiner, S. On Biomineralization; Oxford University Press: New York, NY, USA, 1989.
[18]  Ozbek, S.; Balasubramanian, P.G.; Chiquet-Ehrismann, R.; Tucker, R.P.; Adams, J.C. The evolution of extracellular matrix. Mol. Cell. Biol. 2010, 21, 4300–4305, doi:10.1091/mbc.E10-03-0251.
[19]  Bentley, A.A.; Adams, J.C. The evolution of thrombospondins and their ligand binding activities. Mol. Biol. Evol. 2010, 2, 218–221.
[20]  Seipel, K.; Eberhardt, M.; Muller, P.; Pescia, E.; Yanze, N.; Schmid, V. Homologs of vascular endothelial growth factor and receptor, VEGF and VEGFR, in the jellyfish Podocoryne carnea. Dev. Dyn. 2004, 231, 303–312, doi:10.1002/dvdy.20139.
[21]  Zoccola, D.; Moya, A.; Beranger, G.E.; Tambutte, E.; Allemand, D.; Carle, G.F.; Tambutte, S. Specific expression of BMP2/4 ortholog in biomineralizing tissues of corals and action on mouse BMP receptor. Mar. Biotechnol. 2000, 11, 260–269.
[22]  Allemand, D.; Tambutté, E.; Zoccola, D.; Tambutté, S. Coral Calcification, Cells to Reef. In Coral Reefs: An Ecosystem in Transition; Dubinsky, Z., Stambler, N., Eds.; Springer Science and Business Media B.V.: Dordrecht, The Netherlands, 2011; pp. 119–150.
[23]  Kramarsky-Winter, E.; Loya, Y. Tissue regeneration in the coral Fungia granulosa: The effect of extrinsic and intrinsic factors. Mar. Biol. 2000, 137, 867–873, doi:10.1007/s002270000416.
[24]  Nichols, S.A.; Dirks, W.; Pearse, J.S.; King, N. Early evolution of animal cell signaling and adhesion genes. Proc. Natl. Acad. Sci. USA 2006, 103, 12451–12456.
[25]  Gautret, P.; Cuif, J.-P.; Stolarski, J. Organic components of the skeleton of Scleractinian corals—Evidence from in situ acridine orange staining. Acta Palaentol. Pol. 2000, 45, 107–118.
[26]  Li, J.W.-H.; Vederas, J.C. Drug discovery and natural products: End of an era or an endless frontier? Science 2009, 325, 161, doi:10.1126/science.1168243.
[27]  Proksch, P.; Edrada-Ebel, R. Drugs from the sea—Opportunities and obstacles. Mar. Drugs 2003, 1, 5–17, doi:10.3390/md101005.
[28]  Manning, T.J.; Rhodes, E.; Land, M.; Parkman, R.; Sumner, N.; Lam, T.T.; Marshall, A.G.; Phillips, D. Impact of environmental conditions on the marine natural product bryostatin 1. Nat. Prod. Res. 2006, 20, 611–628, doi:10.1080/14786410500462645.
[29]  Bruckner, A.W. Life-saving products form coral reefs: Coral reefs are storehouses of genetic resources with vast medicinal potential, but they must be properly managed. Issues Sci. Technol. 2002, 18, 39–45.
[30]  Helman, Y.; Natale, F.; Sherrell, R.M.; LaVigne, M.; Starovoytov, V.; Gorbunov, M.Y.; Falkowski, P.G. Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro. Proc. Natl. Acad. Sci. USA 2008, 105, 54–58.
[31]  Horoszowski-Fridman, Y.B.; Izhaki, I.; Rinkevich, B. Engineering of coral reef larval supply through transplantation of nursery farmed gravid colonies. J. Exp. Mar. Biol. Ecol. 2011, 3, 162–166, doi:10.1016/j.jembe.2011.01.005.
[32]  Gateno, D.; Barki, Y.; Rinkevich, B. Aquarium maintenance of reef octocorals raised from field collected larvae. Aquar. Sci. Conserv. 2000, 2, 227–236.
[33]  Sykaras, N.; Opperman, L.A. Bone morphogenetic proteins (BMPs): How do they function and what can they offer the clinician? J. Oral Sci. 2003, 45, 57–73, doi:10.2334/josnusd.45.57.
[34]  Lelong, C.; Mathieu, M.; Favrel, P. Identification of new bone morphogenetic protein-related members in invertebrates. Biochimie 2001, 83, 423–426, doi:10.1016/S0300-9084(01)01260-3.
[35]  Reber-Muller, S.; Streitwolf-Engel, R.; Yanze, N.; Schmid, V.; Stierwald, M.; Erb, M.; Seipel, K. BMP2/4 and BMP5-8 in jellyfish development and transdifferentiation. Int. J. Dev. Biol. 2006, 50, 377–384.
[36]  Srivastava, M.; Simakov, O.; Chapman, J.; Fahey, B.; Gauthier, M.E.A.; Mitros, T.; Richards, G.S.; Conaco, C.; Dacre, M.; Hellsten, U.; et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 2010, 466, 720–726.
[37]  Pang, K.; Ryan, J.F.; Baxevanis, A.D.; Martindale, M.Q. Evolution of the TGF-β signaling pathway and its potential role in the Ctenophore, Mnemiopsis leidyi. PLoS One 2011, 6, e24152.
[38]  Franchini, A.; Ottaviani, E. Repair of molluscan tissue injury: Role of PDGF and TGF-β1. Tissue Cell 2000, 32, 312–321, doi:10.1054/tice.2000.0118.
[39]  Lind, M. Growth factors: Possible new clinical tools. Acta Orthop. Scand. 1996, 67, 407–417, doi:10.3109/17453679609002342.
[40]  Ornitz, D.M.; Marie, P.J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002, 15, 1446–1465.
[41]  Rentzsch, F.; Fritzenwanker, J.H.; Scholz, C.B.; Technau, U. FGF signaling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development 2008, 135, 1761–1769, doi:10.1242/dev.020784.
[42]  Matus, D.Q.; Thomsen, G.H.; Martindale, M.Q. FGF signaling in gastrulation and neural development in Nematostella vectensis, an Anthozoan cnidarians. Dev. Genes Evol. 2007, 217, 137–148, doi:10.1007/s00427-006-0122-3.
[43]  Weiss, I.M.; G?hring, W.; Fritz, M.; Mann, K. Perlustrin, a Haliotis laevigata (Abalone) Nacre protein, is homologous to the insulin-like growth factor binding protein N-terminal module of vertebrates. Biochem. Biophys. Res. Commun. 2001, 285, 244–249, doi:10.1006/bbrc.2001.5170.
[44]  Beschin, A.; Bilej, M.; Torreele, E.; DeBaetselier, P. On the existence of cytokines in invertebrates. Cell. Mol. Life Sci. 2001, 58, 801–814, doi:10.1007/PL00000901.
[45]  Gerber, S.; Cadet, P.; Sheehan, M.; Stefano, G.B.; Mantione, K.J. Vertebrate interleukins originated in invertebrates? Invertebr. Surviv. J. 2000, 4, 95–100.
[46]  Marie, P.J.; Hott, M.; Perheentupa, J. Effects of epidermal growth factor on bone formation and resorption in vivo. Am. J. Physiol. Endocrinol. Metab. 1990, 258, E275–E281.
[47]  Wiens, M.; Belikov, S.I.; Kaluzhnaya, O.V.; Adell, T.; Schr?der, H.C.; Perovic-Ottstadt, S.; Kaandorp, J.A.; Müller, W.E. Regional and modular expression of morphogenetic factors in the Demosponge, Lubomirskia baicalensis. Micron 2008, 39, 447–460, doi:10.1016/j.micron.2007.02.003.
[48]  Franchini, A.; Kletsas, D.; Ottaviani, E. Presence of PDGF and TGF-β1 immunoreactive molecules in invertebrate and vertebrate immunocytes: An evolutionary approach. Histochem. J. 1996, 28, 599–605, doi:10.1007/BF02331380.
[49]  Rehman, M.A.; Isa, Y.; Uehara, T. Proteins of calcified endoskeleton: II Partial amino acid sequences of endoskeletal proteins and the characterisation of proteinaceous organic matrix of spicules from the alcyonarian, Synularia polydactyla. Proteomics 2005, 5, 885–893, doi:10.1002/pmic.200401130.
[50]  Fukuda, I.; Ooki, S.; Fulita, T.; Murayama, E.; Nagasawa, H.; Isa, Y.; Watanabe, T. Molecular cloning of cDNA encoding a soluble protein in the coral exoskeleton. Biochem. Biophys. Res. Commun. 2003, 304, 11–17, doi:10.1016/S0006-291X(03)00527-8.
[51]  Goffredo, S.; Vergni, P.; Reggi, M.; Caroselli, E.; Sparla, F.; Levy, O.; Dubinsky, Z.; Falini, G. The skeletal organic matrix from Mediterranean coral, Balanophyllia europaea influences calcium carbonate precipitation. PLoS One 2011, 6, e22338.
[52]  Puverel, S.; Tambutte, E.; Pereira-Mouries, L.; Zoccola, D.; Allemand, D.; Tambutte, S. Soluble organic matrix of two Scleractinian corals: Partial and comparative analysis. Comp. Biochem. Physiol. B 2005, 141, 480–487, doi:10.1016/j.cbpc.2005.05.013.
[53]  Debreuil, J.; Tambutté, S.; Zoccola, D.; Segonds, N.; Techer, N.; Marschal, C.; Allemand, D.; Kosuge, S.; Tambutté, é. Specific organic matrix characteristics in skeletons of Corallium species. Mar. Biol. 2011, 158, 2765–2774.
[54]  Jackson, D.J.; Macis, L.; Reitner, J.; Degnan, B.M.; W?rheide, G. Sponge Paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis. Science 2007, 316, 1893–1895, doi:10.1126/science.1141560.
[55]  Atlan, G.; Balmain, N.; Berland, S.; Vidal, B.; Lopez, E. Rconstruction of human maxillary defects with nacre powder: Histological evidence for bone regeneration. C. R. Acad. Sci. Ser. III 1997, 320, 253–258, doi:10.1016/S0764-4469(97)86933-8.
[56]  Mouriès, L.P.; Almeida, M.J.; Milet, C.; Lopez, E. Bioactivity of nacre water-soluble organic matrix from the bivalve mollusc Pinctada maxima in three mammalian cell types: Fibroblasts, bone marrow stromal cells and osteoblasts. Comp. Biochem. Physiol. B 2002, 132, 217–229, doi:10.1016/S1096-4959(01)00524-3.
[57]  Almeida, M.J.; Milet, C.; Peduzzi, J.; Pereira, L.; Haigle, J.; Barthelemy, M.; Lopez, E. Effect of water-soluble matrix fraction extracted from the nacre of Pinctada maxima on the alkaline phosphatase activity of cultured fibroblasts. J. Exp. Zool. 2000, 15, 327–334.
[58]  Milet, C.; Berland, S.; Lamghari, M.; Mouries, L.; Jolly, C.; Borzeix, S.; Doumenc, D.; Lopez, E. Conservation of signal molecules involved in biomineralisation control in calcifying matrices of bone and shell. C. R. Palevol 2004, 3, 493–501, doi:10.1016/j.crpv.2004.07.010.
[59]  Oliveira, D.V.; Silva, T.S.; Cordeiro, O.D.; Cavaco, S.I.; Simes, D.C. Identification of proteins with potential osteogenic activity present in the water-soluble matrix proteins from Crassostrea gigas nacre using a proteomic approach. Sci. World J. 2012, 2012, 765909.
[60]  Pennington, S.R.; Wilkins, M.R.; Hochstrasser, D.F.; Dunn, M.J. Proteome analysis: From protein characterization to biological function. Trends Cell Biol. 1997, 7, 168–173, doi:10.1016/S0962-8924(97)01033-7.
[61]  Wilkins, M.R.; Sanchez, J.-C.; Gooley, A.A.; Appel, R.D.; Humphrey-Smith, I.; Hochstrasser, D.F.; Williams, K.L. Progress with proteome projects expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 1996, 13, 19–50.
[62]  Molloy, M.P.; Witzmann, F.A. Proteomics: Technologies and applications. Brief. Funct. Genomics Proteomics 2002, 1, 23–39.
[63]  Dauphin, Y. Comparative studies of skeletal soluble matrices from some Scleractinian corals and molluscs. Int. J. Biol. Macromol. 2001, 28, 293–304, doi:10.1016/S0141-8130(01)00124-6.
[64]  Watanabe, T.; Fukuda, I.; China, K.; Isa, Y. Molecular analyses of protein components of the organic matrix in the exoskeleton of two Scleractinian coral species. Comp. Biochem. Physiol. B 2003, 136, 767–774, doi:10.1016/S1096-4959(03)00177-5.
[65]  Marin, F.; Luquet, G. Molluscan shell proteins. C. R. Palevol 2004, 3, 469–492, doi:10.1016/j.crpv.2004.07.009.
[66]  Sroga, G.E.; Karim, L.; Colón, W.; Vashishth, D. Biochemical characterization of major bone-matrix proteins using nanoscale-size bone samples and proteomics methodology. Mol. Cell. Proteomics 2011, 10, M110.006718, doi:10.1074/mcp.M110.006718.
[67]  Marie, B.; Marin, F.; Marie, A.; Bedouet, L.; Dubost, L.; Alcaraz, G.; Milet, C.; Luquet, G. Evolution of nacre: Biochemistry and proteomics of the shell organic matrix of the Cephalopod Nautilus macromphalus. ChemBioChem 2009, 10, 1495–1506.
[68]  Marie, B.; Marie, A.; Jackson, D.J.; Dubost, L.; Degnan, B.M.; Milet, C.; Marin, F. Proteomic analysis of the organic matrix of the abalone Haliotis asinine calcified shell. Proteomic Sci. 2010, 8, 54.
[69]  Drake, J.L.; Mass, T.; Haramaty, L.; Zelzion, H.; Bhattacharya, D.; Falkowski, P.G. Proteomic analysis of skeletal organic matrix from the stony coral, Stylophora pistillata. Proc. Natl. Acad. Sci. USA 2013, 110, 3788–3793.
[70]  Mann, K.; Poustka, A.J.; Mann, M. In-depth, high accuracy proteomics of sea urchin tooth organic matrix. Proteome Sci. 2008, 6, 33, doi:10.1186/1477-5956-6-33.


comments powered by Disqus

Contact Us


微信:OALib Journal