All Title Author
Keywords Abstract

Marine Drugs  2013 

Biological Activities of Ethanolic Extracts from Deep-Sea Antarctic Marine Sponges

DOI: 10.3390/md11041126

Keywords: Antarctic marine sponges, hemolysis, antibacterial activity, acetylcholinesterase inhibition, cytotoxicity

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report on the screening of ethanolic extracts from 33 deep-sea Antarctic marine sponges for different biological activities. We monitored hemolysis, inhibition of acetylcholinesterase, cytotoxicity towards normal and transformed cells and growth inhibition of laboratory, commensal and clinically and ecologically relevant bacteria. The most prominent activities were associated with the extracts from sponges belonging to the genus Latrunculia, which show all of these activities. While most of these activities are associated to already known secondary metabolites, the extremely strong acetylcholinesterase inhibitory potential appears to be related to a compound unknown to date. Extracts from Tetilla leptoderma, Bathydorus cf. spinosus, Xestospongia sp., Rossella sp., Rossella cf. racovitzae and Halichondria osculum were hemolytic, with the last two also showing moderate cytotoxic potential. The antibacterial tests showed significantly greater activities of the extracts of these Antarctic sponges towards ecologically relevant bacteria from sea water and from Arctic ice. This indicates their ecological relevance for inhibition of bacterial microfouling.

References

[1]  Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov. 2009, 8, 69–85.
[2]  Mayer, A.M.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; Newman, D.J.; Potts, B.C.; Shuster, D.E. The odyssey of marinepharmaceuticals: A current pipeline perspective. Trends Pharmacol. Sci. 2010, 31, 255–265.
[3]  Hu, G.P.; Yuan, J.; Sun, L.; She, Z.G.; Wu, J.H.; Lan, X.J.; Zhu, X.; Lin, Y.C.; Chen, S.P. Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar. Drugs 2011, 9, 514–525, doi:10.3390/md9040514.
[4]  Lebar, M.D.; Heimbegner, J.L.; Baker, B.J. Cold-water marine natural products. Nat. Prod. Rep. 2007, 24, 774–797, doi:10.1039/b516240h.
[5]  Abbas, S.; Kelly, M.; Bowling, J.; Sims, J.; Waters, A.; Hamann, M. Advancement into the Arctic region for bioactive sponge secondary metabolites. Mar. Drugs 2011, 9, 2423–2437, doi:10.3390/md9112423.
[6]  McClintock, J.B.; Amsler, C.D.; Baker, B.J.; van Soest, R.W.M. Ecology of Antarctic marine sponges: An overview. Integr. Comp. Biol. 2005, 45, 359–368, doi:10.1093/icb/45.2.359.
[7]  Janussen, D.; Tendal, O.S. Diversity and distribution of porifera in the bathyal and abyssal Weddell Sea and adjacent areas. Deep-Sea Res. II 2007, 54, 1864–1875.
[8]  Wilkins, S.P.; Blum, A.J.; Burkepile, D.E.; Rutland, T.J.; Wierzbicki, A.; Kelly, M.; Hamann, M.T. Isolation of an antifreezepeptide from the Antarctic sponge Homaxinella balfourensis. Cell. Mol. Life Sci. 2002, 59, 2210–2215, doi:10.1007/s000180200020.
[9]  Kunzmann, K. Associated Fauna of Selected Sponges (Hexactinellida and Demospongiae) from the Weddell Sea, Antarctica; Alfred Wegener Institute for Polar and Marine Research: Bremerhaven, Germany, 1996; Volume 210, pp. 1–93.
[10]  Xin, Y.; Kanagasabhapathy, M.; Janussen, D.; Xue, S.; Zhang, W. Phylogenetic diversity of Gram-positive bacteria cultured from Antarctic deep-sea sponges. Polar Biol. 2011, 34, 1501–1512, doi:10.1007/s00300-011-1009-y.
[11]  Vetter, W.; Janussen, D. Halogenated natural products in five species of Antarctic sponges: Compounds with POP-like properties. Environ. Sci. Technol. 2005, 39, 3889–3895, doi:10.1021/es0484597.
[12]  Sep?i?, K.; Kauferstein, S.; Mebs, D.; Turk, T. Biologicalactivities of aqueous and organicextracts from tropical marine sponges. Mar. Drugs 2010, 8, 1550–1566, doi:10.3390/md8051550.
[13]  Antunes, E.A.; Copp, B.R.; Davies-Coleman, M.T.; Samaai, T. Pyrroloiminoquinone and related metabolites from marine sponges. Nat. Prod. Rep. 2005, 22, 62–72, doi:10.1039/b407299p.
[14]  Na, M.; Ding, Y.; Wang, B.; Tekwani, B.L.; Schinazi, R.F.; Franzblau, S.; Kelly, M.; Stone, R.; Li, X.C.; Ferreira, D.; et al. Anti-infective discorhabdins from a deep-water Alaskan sponge of the genus Latrunculia. J. Nat. Prod. 2010, 73, 383–387, doi:10.1021/np900281r.
[15]  Yarmola, E.G.; Somasundaram, T.; Boring, T.A.; Spector, I.; Bubb, M.R. Actin-latrunculin A structure and function: Differential modulation of actin-binding protein function by latrunculin A. J. Biol. Chem. 2000, 275, 28120–28127.
[16]  Kaur, J.; Zhang, M.Q. Molecular modelling and QSAR of reversible acetylcholinesterase inhibitors. Curr. Med. Chem. 2000, 7, 273–294, doi:10.2174/0929867003375254.
[17]  Nèeman, I.; Fishelson, L.; Kashman, Y. Isolation of a new toxin from the sponge Latrunculia magnifica in the Gulf of Aquaba (Red Sea). Mar. Biol. 1975, 30, 293–296, doi:10.1007/BF00390634.
[18]  Laport, M.S.; Santos, O.C.; Muricy, G. Marine sponges: Potential sources of new antimicrobial drugs. Curr. Pharm. Biotechnol. 2009, 10, 86–105, doi:10.2174/138920109787048625.
[19]  Lippert, H.; Brinkmeyer, R.; Mülhaupt, T.; Iken, K. Antimicrobial activity in sub-Arctic marine invertebrates. Polar Biol. 2003, 26, 591–600, doi:10.1007/s00300-003-0525-9.
[20]  McClintock, J.B.; Gauthier, J.J. Antimicrobial activities of Antarctic sponges. Antarc. Sci. 1992, 4, 179–183.
[21]  Perry, N.B.; Blunt, J.W.; Munro, M. Cytotoxic pigments from New Zealand sponges of the genus Latrunculia: Discorhabdins a, b and c. Tetrahedron 1988, 44, 1727–1734, doi:10.1016/S0040-4020(01)86737-5.
[22]  Copp, B.R.; Fulton, K.F.; Perry, N.B.; Blunt, J.W.; Munro, M.H.G. Natural and synthetic derivatives of discorhabdin C, a cytotoxic pigment from the New Zealand sponge Latrunculia cf. bocagei. J. Org. Chem. 1994, 59, 8233–8238.
[23]  Ford, J.; Capon, R. Discorhabdin R: A new antibacterial pyrroloiminoquinone from two latrunculiid marine sponges, Latrunculia sp. and Negombata sp. J. Nat. Prod. 2000, 63, 1527–1528, doi:10.1021/np000220q.
[24]  Capon, R.J.; MacLeod, J.K.; Willis, A.C. Trunculins A and B, norsesterterpene cyclic peroxides from a marine sponge, Latrunculia brevis. J. Org. Chem. 1987, 52, 339–342, doi:10.1021/jo00379a004.
[25]  Turk, T.; Sep?i?, K.; Mancini, I.; Guella, G. 3-Akylpyridinium and 3-alkylpyridine compounds from marine sponges, their synthesis, biological activities and potential use. Stud. Nat. Prod. Chem. 2008, 35, 355–397, doi:10.1016/S1572-5995(08)80009-9.
[26]  Timm, C.; Mordhorst, T.; Kock, M. Synthesis of 3-alkyl pyridinium alkaloids from the arctic sponge Haliclona viscosa. Mar. Drugs 2010, 8, 483–497, doi:10.3390/md8030483.
[27]  Ishiyama, H.; Hashimoto, A.; Fromont, J.; Hoshino, Y.; Mikami, Y.; Kobayashi, J. Halichonadins A–D, new sesquiterpenoids from a sponge Halichondria sp. Tetrahedron 2005, 61, 1101–1105, doi:10.1016/j.tet.2004.11.054.
[28]  Kawsar, S.M.A.; Mamun, S.M.A.; Rahman, M.S.; Yasumitsu, H.; Ozeki, Y. In-vitro antibacterial and antifungal effects of a 30 kDa d-galactoside-specific lectin from the Demosponge, Halichondria okadai. Int. J. Biol. Life Sci. 2010, 6, 31–37.
[29]  Peters, K.J.; Amsler, C.D.; McClintock, J.B.; Baker, B.J. Potential chemical defenses of Antarctic sponges against sympatric microorganisms. Polar Biol. 2010, 33, 649–658, doi:10.1007/s00300-009-0741-z.
[30]  Jayatilake, G.S.; Thornton, M.P.; Leonard, A.C.; Grimwade, J.E.; Baker, B.J. Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J. Nat. Prod. 1996, 59, 293–296, doi:10.1021/np960095b.
[31]  Encarnación, D.R.; Franzblau, S.G.; Tapia, C.A.; Cedillo-Rivera, R. Screening of marine organisms for antimicrobial and antiprotozoal activity. Pharm. Biol. 2000, 38, 379–384, doi:10.1076/phbi.38.5.379.5964.
[32]  Li, H.; Matsunaga, S.; Fusetani, N. Halicylindramides A–C, antifungal and cytotoxic depsipeptides from the marine sponge Halichondria cylindrata. J. Med. Chem. 1995, 38, 338–343, doi:10.1021/jm00002a015.
[33]  Zhang, H.J.; Sun, J.B.; Lin, H.W.; Wang, Z.L.; Tang, H.; Cheng, P.; Chen, W.S.; Yi, Y.H. A new cytotoxic cholesterol sulfate from marine sponge Halichondria rugosa. Nat. Prod. Res. 2007, 21, 953–958, doi:10.1080/14786410701371330.
[34]  Hirata, Y.; Uemura, D. Halichondrins—Antitumor polyether macrolides from a marine sponge. Pure Appl. Chem. 1986, 58, 701–710, doi:10.1351/pac198658050701.
[35]  Pettit, G.R.; Herald, C.L.; Boyd, M.R.; Leet, J.E.; Dufresne, C.; Doubek, D.L.; Schmidt, J.M.; Cerny, R.L.; Hooper, J.N.; Rützler, K.C. Antineoplastic agents. 219. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. J. Med. Chem. 1991, 34, 3339–3340, doi:10.1021/jm00115a027.
[36]  Ellman, G.L.; Courtney, D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95.

Full-Text

comments powered by Disqus