All Title Author
Keywords Abstract

Identification of Plasma Metabolomic Profiling for Diagnosis of Esophageal Squamous-Cell Carcinoma Using an UPLC/TOF/MS Platform

DOI: 10.3390/ijms14058899

Keywords: metabolomics, plasma, esophageal squamous-cell carcinoma, UPLC/TOF/MS

Full-Text   Cite this paper   Add to My Lib


Epidemiological studies indicated that esophageal squamous-cell carcinoma (ESCC) is still one of the most common causes of cancer incidence in the world. Searching for valuable markers including circulating endogenous metabolites associated with the risk of esophageal cancer, is extremely important A comparative metabolomics study was performed by using ultraperformance liquid chromatography-electrospray ionization-accurate mass time-of-flight mass spectrometry to analyze 53 pairs of plasma samples from ESCC patients and healthy controls recruited in Huaian, China. The result identified a metabolomic profiling of plasma including 25 upregulated metabolites and five downregulated metabolites, for early diagnosis of ESCC. With a database-based verification protocol, 11 molecules were identified, and six upregulated molecules of interest in ESCC were found to belong to phospholipids as follows: phosphatidylserine, phosphatidic acid, phosphatidyl choline, phosphatidylinositol, phosphatidyl ethanolamine, and sphinganine 1-phosphate. Clinical estimation of metabolic biomarkers through hierarchical cluster analysis in plasma samples from 17 ESCC patients and 29 healthy volunteers indicated that the present metabolite profile could distinguish ESCC patients from healthy individuals. The cluster of aberrant expression of these metabolites in ESCC indicates the critical role of phospholipid metabolism in the oncogenesis of ESCC and suggests its potential ability to assess the risk of ESCC development in addition to currently used risk factors.


[1]  Enzinger, P.C.; Mayer, R.J. Esophageal cancer. N. Engl. J. Med 2003, 349, 2241–2252.
[2]  Zhou, J.; Xiang, Q.; Tao, R.; Yang, J.; Lin, P.; Wu, M. Analysis on surveillance of cause death in Jiangsu province during 2007. Jiangsu J. Prev. Med 2008, 19, 74–75.
[3]  Rice, T.W.; Rusch, V.W.; Apperson-Hansen, C.; Allen, M.S.; Chen, L.Q.; Hunter, J.G.; Kesler, K.A.; Law, S.; Lerut, T.E.; Reed, C.E.; et al. Worldwide esophageal cancer collaboration. Dis. Esophagus 2009, 22, 1–8.
[4]  Nicholson, J.K.; Lindon, J.C. Systems biology: Metabonomics. Nature 2008, 455, 1054–1056.
[5]  Idle, J.R.; Gonzalez, F.J. Metabolomics. Cell Metab 2007, 6, 348–351.
[6]  Syggelou, A.; Iacovidou, N.; Atzori, L.; Xanthos, T.; Fanos, V. Metabolomics in the developing human being. Pediatr. Clin. N. Am 2012, 59, 1039–1058.
[7]  Johnson, C.H.; Gonzalez, F.J. Challenges and opportunities of metabolomics. J. Cell. Physiol 2012, 227, 2975–2981.
[8]  Ellis, D.I.; Dunn, W.B.; Griffin, J.L.; Allwood, J.W.; Goodacre, R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 2007, 8, 1243–1266.
[9]  Ma, Y.; Zhang, P.; Yang, Y.; Wang, F.; Qin, H. Metabolomics in the fields of oncology: A review of recent research. Mol. Biol. Rep 2012, 39, 7505–7511.
[10]  O’Connell, T.M. Recent advances in metabolomics in oncology. Bioanalysis 2012, 4, 431–451.
[11]  Mamas, M.; Dunn, W.B.; Neyses, L.; Goodacre, R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch. Toxicol 2011, 85, 5–17.
[12]  Claudino, W.M.; Quattrone, A.; Biganzoli, L.; Pestrin, M.; Bertini, I.; Di Leo, A. Metabolomics: Available results, current research projects in breast cancer, and future applications. J. Clin. Oncol 2007, 25, 2840–2846.
[13]  Qiu, Y.; Cai, G.; Su, M.; Chen, T.; Zheng, X.; Xu, Y.; Ni, Y.; Zhao, A.; Xu, L.X.; Cai, S.; et al. Serum metabolite profiling of human colorectal cancer using gc-tofms and uplc-qtofms. J. Proteome. Res 2009, 8, 4844–4850.
[14]  Zhou, J.; Xu, B.; Huang, J.; Jia, X.; Xue, J.; Shi, X.; Xiao, L.; Li, W. 1h nmr-based metabonomic and pattern recognition analysis for detection of oral squamous cell carcinoma. Clin. Chim. Acta 2009, 401, 8–13.
[15]  Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009, 457, 910–914.
[16]  Zhang, A.; Sun, H.; Wang, X. Serum metabolomics as a novel diagnostic approach for disease: A systematic review. Anal. Bioanal. Chem 2012, 404, 1239–1245.
[17]  Van Meer, G.; de Kroon, A.I. Lipid map of the mammalian cell. J. Cell Sci 2011, 124, 5–8.
[18]  Wymann, M.P.; Schneiter, R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol 2008, 9, 162–176.
[19]  Dueck, D.A.; Chan, M.; Tran, K.; Wong, J.T.; Jay, F.T.; Littman, C.; Stimpson, R.; Choy, P.C. The modulation of choline phosphoglyceride metabolism in human colon cancer. Mol. Cell. Biochem 1996, 162, 97–103.
[20]  Monteggia, E.; Colombo, I.; Guerra, A.; Berra, B. Phospholipid distribution in murine mammary adenocarcinomas induced by activated neu oncogene. Cancer Detect. Prev 2000, 24, 207–211.
[21]  Dobrzynska, I.; Szachowicz-Petelska, B.; Sulkowski, S.; Figaszewski, Z. Changes in electric charge and phospholipids composition in human colorectal cancer cells. Mol. Cell. Biochem 2005, 276, 113–119.
[22]  Ruiz-Cabello, J.; Cohen, J.S. Phospholipid metabolites as indicators of cancer cell function. NMR Biomed 1992, 5, 226–233.
[23]  Fernandis, A.Z.; Wenk, M.R. Lipid-based biomarkers for cancer. J. Chromatogr. B 2009, 877, 2830–2835.
[24]  Patra, S.K. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim. Biophys. Acta 2008, 1785, 182–206.
[25]  Di Paolo, G.; de Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 2006, 443, 651–657.
[26]  Doria, M.L.; Cotrim, Z.; Macedo, B.; Simoes, C.; Domingues, P.; Helguero, L.; Domingues, M.R. Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells. Breast Cancer Res. Treat 2012, 133, 635–648.
[27]  Ackerstaff, E.; Glunde, K.; Bhujwalla, Z.M. Choline phospholipid metabolism: A target in cancer cells? J. Cell. Biochem 2003, 90, 525–533.
[28]  Jackowski, S. Cell cycle regulation of membrane phospholipid metabolism. J. Biol. Chem 1996, 271, 20219–20222.
[29]  Jackowski, S. Coordination of membrane phospholipid synthesis with the cell cycle. J. Biol. Chem 1994, 269, 3858–3867.
[30]  Podo, F. Tumour phospholipid metabolism. NMR Biomed 1999, 12, 413–439.
[31]  Li, S.Y.; Yu, B.; An, P.; Liang, Z.J.; Yuan, S.J.; Cai, H.Y. Effects of cell membrane phospholipid level and protein kinase c isoenzyme expression on hepatic metastasis of colorectal carcinoma. Hepatobiliary Pancreat. Dis. Int 2004, 3, 411–416.
[32]  Stace, C.L.; Ktistakis, N.T. Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim. Biophys. Acta 2006, 1761, 913–926.
[33]  Yeung, T.; Gilbert, G.E.; Shi, J.; Silvius, J.; Kapus, A.; Grinstein, S. Membrane phosphatidylserine regulates surface charge and protein localization. Science 2008, 319, 210–213.
[34]  Spiegel, S.; Milstien, S. Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol 2003, 4, 397–407.
[35]  Colie, S.; van Veldhoven, P.P.; Kedjouar, B.; Bedia, C.; Albinet, V.; Sorli, S.C.; Garcia, V.; Djavaheri-Mergny, M.; Bauvy, C.; Codogno, P.; et al. Disruption of sphingosine 1-phosphate lyase confers resistance to chemotherapy and promotes oncogenesis through bcl-2/bcl-xl upregulation. Cancer Res 2009, 69, 9346–9353.
[36]  Hannun, Y.A.; Obeid, L.M. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat. Rev. Mol. Cell Biol 2008, 9, 139–150.
[37]  Segui, B.; Andrieu-Abadie, N.; Jaffrezou, J.P.; Benoist, H.; Levade, T. Sphingolipids as modulators of cancer cell death: Potential therapeutic targets. Biochim. Biophys. Acta 2006, 1758, 2104–2120.
[38]  Ponnusamy, S.; Meyers-Needham, M.; Senkal, C.E.; Saddoughi, S.A.; Sentelle, D.; Selvam, S.P.; Salas, A.; Ogretmen, B. Sphingolipids and cancer: Ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 2010, 6, 1603–1624.
[39]  Wang, D.; Zhao, Z.; Caperell-Grant, A.; Yang, G.; Mok, S.C.; Liu, J.; Bigsby, R.M.; Xu, Y. S1p differentially regulates migration of human ovarian cancer and human ovarian surface epithelial cells. Mol. Cancer Ther 2008, 7, 1993–2002.
[40]  Kind, T.; Fiehn, O. Advances in structure elucidation of small molecules using mass spectrometry. Bioanal. Rev 2010, 2, 23–60.
[41]  Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; et al. Hmdb: A knowledgebase for the human metabolome. Nucleic Acids Res 2009, 37, D603–D610.
[42]  Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. Metlin: A metabolite mass spectral database. Ther. Drug Monit 2005, 27, 747–751.


comments powered by Disqus