全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Drain Current Models for Single-Gate Mosfets & Undoped Symmetric & Asymmetric Double-Gate SOI Mosfets And Quantum Mechanical Effects: A Review

Keywords: Double Gate MOSFET (DGFETs) , MOS Modeling , Analytical modeling , Compact Modeling , Drain current model.

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper modeling framework for single gate conventional planar MOSFET and double gate (DG) MOSFETS are reviewed. MOS Modeling can be done by either analytical modeling or compact modeling. Single gate MOSFET technology has been the choice of mainstream digital circuits for VLSI as well as for other high frequency application in the low GHZ range. The major single gate MOS modeling methods are reviewed and compared. First generation to fifth generation MOS models like BSIM & PSP are compared. The use of multiple gates has emerged as a new technology to replace the conventional planar MOSFET when itsfeature size is scaled to the sub 22nm regime. Double Gate devices seem to be attractive alternatives as they can effectively reduce the short channel effects and yield higher current drive. DGFETS are classified as Symmetric Double Gate FETs (SDGFET) and Asymmetric Double Gate FETs (ADGFET). This paper covers the fundamentals of SDGFETs and ADGFETs. Drain current models for single gate MOSFETs, SDGFETs and ADGFETs are reviewed. In the Double gate MOS era the dominating quantum mechanical effects which has to be considered in two dimensional modeling are also discussed. The comparisons of drain current models for Symmetric and Asymmetric Double gate MOSFETs are done and shown with the results like limitations of the models. A brief summary of the review work is provided. The result shows a greater demand in the field of Asymmetric Double gate modeling which can be extended for circuits like SRAM and RF amplifier design. Thepremier quantum mechanical effects which should be included in model development for below 22nm devices are listed.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133