全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Slowly Oscillating Continuity

DOI: 10.1155/2008/485706

Full-Text   Cite this paper   Add to My Lib

Abstract:

A function is continuous if and only if, for each point 0 in the domain, lim→∞()=(0), whenever lim→∞=0. This is equivalent to the statement that (()) is a convergent sequence whenever () is convergent. The concept of slowly oscillating continuity is defined in the sense that a function is slowly oscillating continuous if it transforms slowly oscillating sequences to slowly oscillating sequences, that is, (()) is slowly oscillating whenever () is slowly oscillating. A sequence () of points in is slowly oscillating if lim→1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133