Electrochemical oxidation of quercetin, as an important biological molecule, has been studied in non-aqueous media using cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. To investigate the electrochemical properties of quercetin, an important flavonoid derivative, on a different surface, a new glassy carbon electrode has been developed using dithiooxamide as modifier in non-aqueous media. The surface modification of glassy carbon electrode has been performed within the 0.0 mV and +800 mV potential range with 20 cycles using 1 mM dithioxamide solution in acetonitrile. However, the modification of quercetin to both bare glassy carbon and dithiooxamide modified glassy carbon electrode surface was carried out in a wide +300 mV and +2,800 mV potential range with 10 cycles. Following the modification process, cyclic voltammetry has been used for the surface characterization in aqueous and non-aqueous media whereas electrochemical impedance spectroscopy has been used in aqueous media. Scanning electron microscopy has also been used to support the surface analysis. The obtained data from the characterization and modification studies of dithioxamide modified and quercetin grafted glassy carbon electrode showed that the developed electrode can be used for the quantitative determination of quercetin and antioxidant capacity determination as a chemical sensor electrode.
References
[1]
Hotta, H.; Sakamoto, H.; Nagano, S.; Osakai, T.; Tsujino, Y. Unusually large numbers of electrons for the oxidation of polyphenolic antioxidants. Biochim. Biophys. Acta. 2001, 1526, 159–167, doi:10.1016/S0304-4165(01)00123-4. 11325537
[2]
Janeiro, P.; Brett, A.M.O. Solid state electrochemical oxidation mechanisms of morin in aqueous media. Electroanalysis 2005, 17, 733–738, doi:10.1002/elan.200403155.
[3]
RiceEvans, C.A.; Miller, N.J.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159, doi:10.1016/S1360-1385(97)01018-2.
[4]
Cren-Olivé, C.; Hapiot, P.; Pinson, J.; Rolando, C. Free radical chemistry of flavan-3-ols: Determination of thermodynamic parameters and of kinetic reactivity from short (ns) to long (ms) time scale. J. Am. Chem. Soc. 2002, 124, 14027–14038, doi:10.1021/ja0262434. 12440901
[5]
Jovanovic, S.V.; Steenken, S.; Tosic, M.; Marjanovic, B.; Simic, M.G. Flavonoids as antioxidants. J. Am. Chem. Soc. 1994, 116, 4846–4851, doi:10.1021/ja00090a032.
[6]
Slabbert, N.P. Ionisation of some flavanols and dihydroflavonols. Tetrahedron 1977, 33, 821–824, doi:10.1016/0040-4020(77)80200-7.
[7]
Steenken, S.; Neta, P. One-electron redox potentials of phenols. Hydroxy- and aminophenols and related compounds of biological interest. J. Phys. Chem. 1982, 86, 3661–3667, doi:10.1021/j100215a033.
[8]
Hertog, M.G.L.; Hollman, P.C.H.; Katan, M.B.; Kromhout, D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr. Cancer 1993, 20, 21–29, doi:10.1080/01635589309514267. 8415127
[9]
Mülaz?mo?lu, ?.E.; Demir Mülaz?mo?lu, A. Investigation of sensitivity against different flavonoid derivatives of aminophenyl modified glassy carbon sensor electrode and antioxidant activities. Food Anal. Methods 2012, doi:10.1007/s12161-012-9393-7.
[10]
Mülaz?mo?lu, ?.E.; ?zkan, E.; Solak, A.O. Covalent grafting of quercetin, morin and rutin onto glassy carbon electrode surface by cyclic voltammetry. Energy Ed. Sci. Technol. Pt. A 2012, 28, 957–968.
[11]
Mülaz?mo?lu, ?.E.; üstünda?, Z.; ?zkan, E.; Solak, A.O. Electrochemical behavior of some flavonoids covalently grafted onto the glassy carbon surface. Rev. Anal. Chem. 2011, 30, 177–185.
[12]
Sokolová, R.; Degano, I.; Rame?ová, ?.; Bulí?ková, J.; Hromadová, M.; Gál, M; Fiedler, J.; Valá?ek, M. The oxidation mechanism of the antioxidant quercetin in nonaqueous media. Electrochim. Acta. 2011, 56, 7421–7427, doi:10.1016/j.electacta.2011.04.121.
[13]
He, J.B.; Yu, C.L.; Duan, T.L.; Deng, N. In situ spectroelectrochemical analysis of quercetin in acidic medium. Anal. Sci. 2009, 25, 373–377, doi:10.2116/analsci.25.373. 19276593
[14]
Pierozynski, B.; Zielinska, D. Electrooxidation of quercetin at polycrystalline Pt electrode. Int. J. Electrochem. Sci. 2010, 5, 1507–1515.
[15]
Nematollahi, D.; Malakzadeh, M. Electrochemical oxidation of quercetin in the presence of benzenesulfinic acids. J. Electroanal. Chem. 2003, 547, 191–195, doi:10.1016/S0022-0728(03)00188-8.
[16]
Hendrickson, H.P.; Kaufman, A.D.; Lunte, C.E. Electrochemistry of catechol-containing flavonoids. J. Pharm. Biomed. Anal. 1994, 12, 325–334, doi:10.1016/0731-7085(94)90007-8. 8031931
[17]
Li, N.; Chen, J. Studies on the polarographic behaviors of quercetin and the catalytic hydrogen waves of heavy rare earth ?ons-quercetin system. Acta Phys. Chim. Sin. 1994, 10, 489–494.
[18]
Li, N.; Xu, Y.X. Study on the polarographic behaviors of morin. Acta Phys. Chim. Sin. 1993, 9, 175–180.
[19]
Bao, X.; Zhu, Z.; Li, N.Q.; Chen, J. Electrochemical studies of rutin interacting with hemoglobin and determination of hemoglobin. Talanta 2001, 54, 591–596, doi:10.1016/S0039-9140(00)00667-6. 18968281
[20]
Zhu, Z.; Li, C.; Li, N.Q. Electrochemical studies of quercetin interacting with DNA. Microchem. J 2002, 71, 57–63, doi:10.1016/S0026-265X(01)00118-7.
[21]
Liu, W.; Guo, R. Interaction of flavonoid, quercetin with organized molecular assemblies of nonionic surfactant. Colloids Surf. A 2006, 274, 192–199, doi:10.1016/j.colsurfa.2005.09.009.
Walle, T.; Vincent, T.S.; Walle, U.K. Evidence of covalent binding of the dietary flavonoid quercetin to DNA and protein in human intestinal and hepatic cells. Biochem. Pharmacol. 2003, 65, 1603–1610, doi:10.1016/S0006-2952(03)00151-5. 12754096
[24]
Canada, A.T.; Giannella, E.; Nguyen, T.D.; Mason, R.P. The production of reactive oxygen species by dietary flavonols. Free Radic. Biol. Med. 1990, 9, 441–449, doi:10.1016/0891-5849(90)90022-B. 1963417
Kubo, I.; Nihei, K.; Shimizu, K. Oxidation products of quercetin catalyzed by mushroom tyrosinase. Bioorg. Med. Chem. 2004, 12, 5343–5347, doi:10.1016/j.bmc.2004.07.050. 15388161
[27]
Edder, C.; Piguet, C.; Bernardinelli, G.; Mareda, J.; Bochet, C.G.; Bünzli, L.C.G.; Hopfgartner, G. Unusual electronic effects of electron-withdrawing sulfonamide groups in optically and magnetically active self-assembled noncovalent heterodimetallic d?f podates. Inorg. Chem. 2000, 39, 5059–5073, doi:10.1021/ic000687o. 11233203
[28]
Lapinski, L.; Rostkowska, H.; Khvorostov, A.; Yaman, M.; Fausto, R.; Nowak, M.J. Double-proton-transfer processes in dithiooxamide: UV-induced dithione→dithiol reaction and ground-state dithiol→dithione tunneling. J. Phys. Chem. A 2004, 108, 5551–5558, doi:10.1021/jp049263w.
[29]
Zhao, H.; Zhang, Y.; Yuan, Z. Study on the electrochemical behavior of dopamine with poly(sulfosalicylic acid) modified glassy carbon electrode. Anal. Chim. Acta. 2001, 441, 117–122, doi:10.1016/S0003-2670(01)01086-8.
[30]
Jin, G.; Zhang, Y.; Cheng, W. Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid. Sens. Actuat. B 2005, 107, 528–534, doi:10.1016/j.snb.2004.11.018.
[31]
Yao, H.; Sun, Y.; Lin, X.; Tang, Y.; Huang, L. Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochim. Acta. 2007, 52, 6165–6171, doi:10.1016/j.electacta.2007.04.013.
[32]
Mülaz?mo?lu, I.E.; Y?lmaz, E. Quantitative determination of phenol in natural decayed leaves using procaine modified carbon paste electrode surface by cyclic voltammetry. Desalination 2010, 256, 64–69, doi:10.1016/j.desal.2010.02.014.
[33]
Cai, C.X.; Xue, K.H.; Xu, S.M. Electrocatalytic activity of a cobalt hexacyanoferrate modified glassy carbon electrode toward ascorbic acid oxidation. J. Electroanal. Chem. 2000, 486, 111–118, doi:10.1016/S0022-0728(00)00114-5.
[34]
Geneste, F.; Moinet, C.; Jezequel, G. First covalent attachment of a polypyridyl ruthenium complex on a graphite felt electrode. New J. Chem. 2002, 26, 1539–1541, doi:10.1039/b206414f.
[35]
Li, X.; Wan, Y.; Sun, C. Covalent modification of a glassy carbon surface by electrochemical oxidation of r-aminobenzene sulfonic acid in aqueous solution. J. Electroanal. Chem. 2004, 569, 79–87, doi:10.1016/j.jelechem.2004.01.036.
[36]
Morita, K.; Yamaguchi, A.; Teramae, N. Electrochemical modification of benzo-15-crown-5 ether on a glassy carbon electrode for alkali metal cation recognition. J. Electroanal. Chem. 2004, 563, 249–255, doi:10.1016/j.jelechem.2003.09.018.
[37]
Mülaz?mo?lu, I.E.; Demir Mülaz?mo?lu, A.; Y?lmaz, E. Determination of quantitative phenol in tap water samples as electrochemical using 3,3′-diaminobenzidine modified glassy carbon sensor electrode. Desalination 2011, 268, 227–232, doi:10.1016/j.desal.2010.10.033.
Hu, S.; Xu, C.; Wang, G.; Cui, D. Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta 2001, 54, 115–123, doi:10.1016/S0039-9140(00)00658-5. 18968232
[40]
Trojanowicz, M.; Kozminski, P.; Dias, H.; Brett, C.M.A. Batch-injection stripping voltammetry (tube-less flow-injection analysis) of trace metals with on-line sample pretreatment. Talanta 2005, 68, 394–400. 18970335
[41]
Truzzi, C.; Annibaldi, A.; Illuminati, S.; Bassotti, E.; Scarponi, G. Square-wave anodic-stripping voltammetric determination of Cd, Pb, and Cu in a hydrofluoric acid solution of siliceous spicules of marine sponges (from the Ligurian Sea, Italy, and the Ross Sea, Antarctica). Anal. Bioanal. Chem. 2008, 392, 247–262, doi:10.1007/s00216-008-2239-x. 18642105
[42]
El Tall, O.; Jaffrezic-Renault, N.; Sigaud, M.; Vittori, O. Anodic stripping voltammetry of heavy metals at nanocrystalline boron-doped diamond electrode. Electroanalysis 2007, 19, 1152–1159, doi:10.1002/elan.200603834.
[43]
Mülaz?mo?lu, ?.E.; Solak, A.O. A novel apigenin modified glassy carbon sensor electrode for the determination of copper ions in soil samples. Anal. Methods 2011, 3, 2534–2539, doi:10.1039/c1ay05328k.
[44]
Demir Mülaz?mo?lu, A.; Mülaz?mo?lu, ?.E.; Y?lmaz, E. Selective and sensitive determination of metal ions based on poly-chrysin modified glassy carbon electrode by CV and SWV. Rev. Anal. Chem. 2012, doi:10.1515/revac.2011.151.
[45]
Mülaz?mo?lu, ?.E. Electrochemical determination of copper(II) ions at naringenin-modified glassy carbon sensor electrode: Application in lake water sample. Desalin. Water Treat. 2012, doi:10.5004/dwt.2012.2994..
Zare, H.R.; Namazian, M.; Nasirizadeh, N. Electrochemical behavior of quercetin: Experimental and theoretical studies. J. Electroanal. Chem. 2005, 584, 77–83, doi:10.1016/j.jelechem.2005.07.005.
[48]
Timbola, A.K.; de Souza, C.D.; Giacomelli, C.; Spinelly, A. Electrochemical oxidation of quercetin in hydro-alcoholic solution. J. Braz. Chem. Soc. 2006, 17, 139–148, doi:10.1590/S0103-50532006000100020.
[49]
Brett, A.M.O.; Diculescu, V.C. Electrochemical study of quercetin-DNA interactions: Part II. In situ sensing with DNA biosensors. Bioelectrochemistry 2004, 64, 143–150, doi:10.1016/j.bioelechem.2004.05.002. 15296787
[50]
Mulaz?moglu, I.E.; Ozkan, E. Investigation of electrochemical behaviour of quercetin on the modified electrode surfaces with procaine and aminophenyl in non-aquous medium. Eur. J. Chem. 2008, 5, 539–550.
[51]
Timbola, A.K.; Souza, C.D.; Soldi, C.; Pizzolatti, M.G.; Spinelli, A. Electro-oxidation of rutin in the presence of p-toluenesulfinic acid. J. Appl. Electrochem 2007, 37, 617–624, doi:10.1007/s10800-007-9292-6.
[52]
Grotewold, E. The Science of Flavonoids; Department of Cellular and Molecular Biology, The Ohio State University: Columbus, OH, USA, 2006.
He, J.B.; Jin, G.P.; Chen, Q.Z.; Wang, Y. A quercetin-modified biosensor for amperometric determination of uric acid in the presence of ascorbic acid. Anal. Chim. Acta. 2007, 585, 337–343, doi:10.1016/j.aca.2007.01.004. 17386683