全部 标题 作者
关键词 摘要

Sensors  2012 

Advances in Atomic Gyroscopes: A View from Inertial Navigation Applications

DOI: 10.3390/s120506331

Keywords: atomic gyroscope, atomic interferometer, atomic spin, cold atom, guided atom, SERF, comagnetometer

Full-Text   Cite this paper   Add to My Lib

Abstract:

With the rapid development of modern physics, atomic gyroscopes have been demonstrated in recent years. There are two types of atomic gyroscope. The Atomic Interferometer Gyroscope (AIG), which utilizes the atomic interferometer to sense rotation, is an ultra-high precision gyroscope; and the Atomic Spin Gyroscope (ASG), which utilizes atomic spin to sense rotation, features high precision, compact size and the possibility to make a chip-scale one. Recent developments in the atomic gyroscope field have created new ways to obtain high precision gyroscopes which were previously unavailable with mechanical or optical gyroscopes, but there are still lots of problems that need to be overcome to meet the requirements of inertial navigation systems. This paper reviews the basic principles of AIG and ASG, introduces the recent progress in this area, focusing on discussing their technical difficulties for inertial navigation applications, and suggests methods for developing high performance atomic gyroscopes in the near future.

References

[1]  Barbour, N.; Schmidt, G. Inertial sensor technology trends. IEEE Sens. J. 2001, 1, 332–339.
[2]  Lawrence, A. Modern Inertial Technology: Navigation, Guidance, and Control; Springer Verlag: Berlin, Germnay, 1998.
[3]  Titterton, D.H.; Weston, J.L. Strapdown Inertial Navigation Technology; Peter Peregrinus Ltd.: London, UK, 2004.
[4]  Farrell, J.; Barth, M. The Global Positioning System and Inertial Navigation; McGraw-Hill Professional: New York, NY, USA, 1999.
[5]  Grewal, M.S.; Weill, L.R.; Andrews, A.P. Global Positioning Systems, Inertial Navigation, and Integration; Wiley Online Library: Hoboken, NJ, USA, 2001.
[6]  Schmidt, G.T. INS/GPS Technology Trends. In NATO RTO Lecture Series, RTO-EN-SET-116, Low-Cost Navigation Sensors and Integration Technology; NATO: Brussels, Belgium, 2011; pp. 1–24.
[7]  Wang, H.G.; Williams, T.C. Strategic inertial navigation systems—High-accuracy inertially stabilized platforms for hostile environments. IEEE Control Syst. Mag. 2008, 28, 65–85.
[8]  Bezick, S.M.; Pue, A.J.; Patzelt, C.M. Inertial navigation for guided missile systems. Johns Hopkins APL Tech. Dig. 2010, 28, 331–342.
[9]  Tazartes, D.A. Inertial navigation: From gimbaled platforms to strapdown sensors. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 2292–2299.
[10]  Cronin, A.D.; Schmiedmayer, J.; Pritchard, D.E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 2009, 81, 1051–1129.
[11]  Major, F.G. The Quantum Beat: Principles and Applications of Atomic Clocks; Springer Verlag: Berlin, Germany, 2007.
[12]  Filler, A.G. The history, development and impact of computed imaging in neurological diagnosis and neurosurgery: CT, MRI, and DTI. Nat. Preced. 2009, 10, 1–76.
[13]  Stoner, R.; Walsworth, R. Collisions give sense of direction. Nat. Phys. 2006, 2, 17–18.
[14]  Rice, H.F.; Benischek, V. Submarine Navigation Applications of Atom Interferometry. Proceedings of the Position, Location and Navigation Symposium, 2008 IEEE/ION, Monterey, CA, USA, 5–8 May 2008.
[15]  John, F.C. Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry. Phys. B 1988, 151, 262–272.
[16]  Durfee, D.S.; Shaham, Y.K.; Kasevich, M.A. Long-term stability of an area-reversible atom-interferometer sagnac gyroscope. Phys. Rev. Lett. 2006, 97, 240801:1–240801:4.
[17]  Kasevich, M.; Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 1991, 67, 181–184.
[18]  Kasevich, M.; Chu, S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl. Phys. B 1992, 54, 321–332.
[19]  Dubetsky, B.; Kasevich, M.A. Atom interferometer as a selective sensor of rotation or gravity. Phys. Rev. A 2006, 74, 023615:1–023615;17.
[20]  Gustavson, T.L. Precision Rotation Sensing Using Atom Interferometry. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2000.
[21]  Takase, K. Precision Rotation Rate Measurements with a Mobile Atom Interferometer. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2008.
[22]  Gustavson, T.L.; Landragin, A.; Kasevich, M.A. Rotation sensing with a dual atom-interferometer Sagnac gyroscope. Class. Quantum Gravity 2000, 17, 2385–2398.
[23]  Gustavson, T.L.; Bouyer, P.; Kasevich, M.A. A Dual Atomic Beam Matter-wave Gyroscope. In Methods for Ultrasensitive Detection; Fearey, B.L., Ed.; SPIE: Bellingham, WA, USA, 1998; Volume 3270, pp. 62–69.
[24]  Marzlin, K.-P.; Audretsch, J. State independence in atom interferometry and insensitivity to acceleration and rotation. Phys. Rev. A 1996, 53, 312–318.
[25]  McGuirk, J.M.; Foster, G.T.; Fixler, J.B.; Snadden, M.J.; Kasevich, M.A. Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 2002, 65, 033608:1–033608:14.
[26]  Canuel, B.; Leduc, F.; Holleville, D.; Gauguet, A.; Fils, J.; Virdis, A.; Clairon, A.; Dimarcq, N.; Borde, C.J.; Landragin, A.; Bouyer, P. Six-axis inertial sensor using cold-atom interferometry. Phys. Rev. Lett. 2006, 97, 010402:1–010402:4.
[27]  Butts, D.L.; Kinast, J.M.; Timmons, B.P.; Stoner, R.E. Light pulse atom interferometry at short interrogation times. J. Opt. Soc. Am. B 2011, 28, 416–421.
[28]  Stoner, R.; Butts, D.; Kinast, J.; Timmons, B. Analytical framework for dynamic light pulse atom interferometry at short interrogation times. J. Opt. Soc. Am. B 2011, 28, 2418–2429.
[29]  Wang, Y.J.; Anderson, D.Z.; Bright, V.M.; Cornell, E.A.; Diot, Q.; Kishimoto, T.; Prentiss, M.; Saravanan, R.A.; Segal, S.R.; Wu, S.J. Atom Michelson interferometer on a chip using a Bose-Einstein condensate. Phys. Rev. Lett. 2005, 94, 090405:1–090405:4.
[30]  Wu, S.; Su, E.; Prentiss, M. Demonstration of an area-enclosing guided-atom interferometer for rotation sensing. Phys. Rev. Lett. 2007, 99, 173201:1–173201:4.
[31]  Wu, S. Light Pulse Talbot-Lau Interferometry with Magnetically Guided Atoms. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 2008.
[32]  Kovachy, T.; Hogan, J.M.; Johnson, D.M.S.; Kasevich, M.A. Optical lattices as waveguides and beam splitters for atom interferometry: An analytical treatment and proposal of applications. Phys. Rev. A 2010, 82, 013638:1–0013638:16.
[33]  Gustavson, T.L.; Bouyer, P.; Kasevich, M.A. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 1997, 78, 2046–2049.
[34]  Stockton, J.K.; Takase, K.; Kasevich, M.A. Absolute geodetic rotation measurement using atom interferometry. Phys. Rev. Lett. 2011, 107, 133001:1–133001:5.
[35]  Chiow, S.-W.; Kovachy, T.; Chien, H.-C.; Kasevich, M.A. 102(h)over-bark large area atom interferometers. Phys. Rev. Lett. 2011, 107, 130403:1–130403:5.
[36]  Tonyushkin, A.; Wu, S.; Prentiss, M. Demonstration of a multipulse interferometer for quantum kicked-rotor studies. Phys. Rev. A 2009, 79, 051402:1–051402:4.
[37]  Wu, S.; Tonyushkin, A.; Prentiss, M.G. Observation of saturation of fidelity decay with an atom interferometer. Phys. Rev. Lett. 2009, 103, 034101:1–034101:4.
[38]  Tonyushkin, A.; Prentiss, M. Straight macroscopic magnetic guide for cold atom interferometer. J. Appl. Phys. 2010, 108, 094904:1–094904:5.
[39]  Cheinet, P.; Canuel, B.; Dos Santos, F.P.; Gauguet, A.; Yver-Leduc, F.; Landragin, A. Measurement of the sensitivity function in a time-domain atomic interferometer. IEEE Trans. Instrum. Meas. 2008, 57, 1141–1148.
[40]  Leveque, T.; Gauguet, A.; Michaud, F.; Dos Santos, F.P.; Landragin, A. Enhancing the area of a raman atom interferometer using a versatile double-diffraction technique. Phys. Rev. Lett. 2009, 103, 080405:1–080405:4.
[41]  Malossi, N.; Bodart, Q.; Merlet, S.; Leveque, T.; Landragin, A.; Dos Santos, F.P. Double diffraction in an atomic gravimeter. Phys. Rev. A 2010, 81, 013617:1–013617:15.
[42]  Stern, G.; Battelier, B.; Geiger, R.; Varoquaux, G.; Villing, A.; Moron, F.; Carraz, O.; Zahzam, N.; Bidel, Y.; Chaibi, W.; Dos Santos, F.P.; Bresson, A.; Landragin, A.; Bouyer, P. Light-pulse atom interferometry in microgravity. Eur. Phys. J. D 2009, 53, 353–357.
[43]  Geiger, R.; Menoret, V.; Stern, G.; Zahzam, N.; Cheinet, P.; Battelier, B.; Villing, A.; Moron, F.; Lours, M.; Bidel, Y.; Bresson, A.; Landragin, A.; Bouyer, P. Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2011, 2.
[44]  Sorrentino, F.; Bongs, K.; Bouyer, P.; Cacciapuoti, L.; de Angelis, M.; Dittus, H.; Ertmer, W.; Giorgini, A.; Hartwig, J.; Hauth, M.; Herrmann, S.; Inguscio, M.; Kajari, E.; Koenemann, T.T.; Laemmerzahl, C.; Landragin, A.; Modugno, G.; Dos Santos, F.P.; Peters, A.; Prevedelli, M.; Rasel, E.M.; Schleich, W.P.; Schmidt, M.; Senger, A.; Sengstock, K.; Stern, G.; Tino, G.M.; Walser, R. A compact atom interferometer for future space missions. Microgravity Sci. Technol. 2010, 22, 551–561.
[45]  Sorrentino, F.; Bongs, K.; Bouyer, P.; Cacciapuoti, L.; de Angelis, M.; Dittus, H.; Ertmer, W.; Hartwig, J.; Hauth, M.; Herrmann, S.; Huang, K.; Inguscio, M.; Kajari, E.; Koenemann, T.; Laemmerzahl, C.; Landragin, A.; Modugno, G.; dos Santos, F.P.; Peters, A.; Prevedelli, M.; Rasel, E.M.; Schleich, W.P.; Schmidt, M.; Senger, A.; Sengstock, K.; Stern, G.; Tino, G.M.; Valenzuela, T.; Walser, R.; Windpassinger, P. The Space Atom Interferometer project: Status and prospects. J. Phys. 2011, 327, 012050:1–012050:13.
[46]  Mueller, T.; Wendrich, T.; Gilowski, M.; Jentsch, C.; Rasel, E.M.; Ertmer, W. Versatile compact atomic source for high-resolution dual atom interferometry. Phys. Rev. A 2007, 76, 063611:1–063611:19.
[47]  Mueller, T.; Gilowski, M.; Zaiser, M.; Berg, P.; Schubert, C.; Wendrich, T.; Ertmer, W.; Rasel, E.M. A compact dual atom interferometer gyroscope based on laser-cooled rubidium. Eur. Phys. J. D 2009, 53, 273–281.
[48]  Woodman, K.F.; Franks, P.W.; Richards, M.D. The nuclear magnetic resonance gyroscope: A review. J. Navig. 1987, 40, 366–384.
[49]  Greenwood, I.A.; Nuclear, Gyroscope. Nuclear Gyroscope with Unequal Fields. U.S. Patent 4,147,974, 3 April 1979.
[50]  Grover, B.C.; Kanegsberg, E.; Mark, J.G.; Meyer, R.L. Nuclear Magnetic Resonance Gyro. U.S. Patent 4,157,495, 5 June 1979.
[51]  Karwacki, F.A. Nuclear magnetic resonance gyro development. J. Inst. Navig. 1980, 27, 72–78.
[52]  Lam, L.; Phillips, E.; Kanegsberg, E.; Kamin, G. Application of CW Single-mode GaAlAs Lasers to Rb-Xe NMR Gyroscopes. Proceedings of the SPIE, Arlington, VA, USA, 5–7 April 1983.
[53]  Auzinsh, M.; Budker, D.; Rochester, S.; Rochester, S.M. Optically Polarized Atoms: Understanding Light-Atom Interactions; Oxford University Press: Oxford, UK, 2010.
[54]  Happer, W.; Jau, Y.Y.; Walker, T. Optically Pumped Atoms; Wiley-VCH: Hoboken, NJ, USA, 2010.
[55]  Wehr, M.R.; Richards, J.A.; Adair, T.W. Physics of the Atom; Addison-Wesley: Boston, MA, USA, 1978.
[56]  Potts, S.P.; Preston, J. A cryogenic nuclear magnetic resonance gyroscope. J. Navig. 1981, 34, 19–37.
[57]  Shaw, G.L. Modeling a Cryogenic He3 Nuclear Gyro. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1981.
[58]  Simpson, J.; Fraser, J.; Greenwood, I. An optically pumped nuclear magnetic resonance gyroscope. IEEE Trans. Aerosp. 1963, 1, 1107–1110.
[59]  Newbury, N.R.; Barton, A.S.; Bogorad, P.; Cates, G.D.; Gatzke, M.; Mabuchi, H.; Saam, B. Polarization-dependent frequency shifts from Rb-3He collisions. Phys. Rev. A 1993, 48, 558–568.
[60]  Kanegsberg, E. Nuclear Magnetic Resonance Gyroscope. U.S. Patent 7,282,910, 16 October 2007.
[61]  Heimann, P.A. Quadrupole perturbation effects upon the 201Hg magnetic resonance. I. Effects upon free precession of the nuclear spins. Phys. Rev. A 1981, 23, 1204–1208.
[62]  Heimann, P.A.; Greenwood, I.A.; Simpson, J.H. Quadrupole perturbation effects upon the 201Hg magnetic resonance. II. Relaxation due to an anisotropic perturbation. Phys. Rev. A 1981, 23, 1209–1214.
[63]  Appelt, S.; W?ckerle, G.; Mehring, M. Deviation from Berry's adiabatic geometric phase in a 131Xe nuclear gyroscope. Phys. Rev. Lett. 1994, 72, 3921–3924.
[64]  Donley, E.A. Nuclear Magnetic Resonance Gyroscopes. Proceedings of the 2010 IEEE Sensors Conference, Kona, HI, USA, 1–4 November 2010.
[65]  Hodby, E.; Donley, E.A.; Kitching, J. Differential atomic magnetometry based on a diverging laser beam. Appl. Phys. Lett. 2007, 91, 011109:1–011109:3.
[66]  Kitching, J.; Donley, E.A.; Hodby, E.; Shkel, A.; Eklund, E.J. Compact Atomic Magnetometer and Gyroscope based on a Diverging Laser Beam. U.S. Patent 7,872,473, 18 January 2011.
[67]  Abbink, H.C.; Kanegsberg, E.; Patterson, R.A. NMR Gyroscope. U.S. Patent 7,239,135, 3 July 2007.
[68]  Kanegsberg, E. Polarization Analyzer Orientation with Nuclear Magnetic Resonance Gyroscope. U.S. Patent 7,936,169, 3 May 2011.
[69]  Abbink, H.C.; Kanegsberg, E.; Marino, K.D.; Volk, C.H. Micro-cell for NMR Gyroscope. U.S. Patent 7,292,031, 6 November 2007.
[70]  Hall, D.B. Small Optics Cell for Miniature Nuclear Magnetic Resonance Gyroscope. U.S. Patent 7,863,894, 4 January 2011.
[71]  Lutwak, R. The Chip-Scale Atomic Clock—Recent Developments. Proceedings of the 2009 Joint Meeting of the European Frequency and Time Forum and the Ieee International Frequency Control Symposium, Besancon, France, 20–24 April 2009.
[72]  Schwindt, P.D.D.; Knappe, S.; Shah, V.; Hollberg, L.; Kitching, J.; Liew, L.A.; Moreland, J. Chip-scale atomic magnetometer. Appl. Phys. Lett. 2004, 85, 6409–6411.
[73]  Romalis, M.V. Atomic sensors—Chip-scale magnetometers. Nat. Photonics 2007, 1, 613–614.
[74]  Kornack, T.W.; Romalis, M.V. Dynamics of two overlapping spin ensembles interacting by spin exchange. Phys. Rev. Lett. 2002, 89, 253002:1–253002:4.
[75]  Kornack, T.W.; Ghosh, R.K.; Romalis, M.V. Nuclear spin gyroscope based on an atomic comagnetometer. Phys. Rev. Lett. 2005, 95, 230801:1–230801:4.
[76]  Kornack, T.W. A Test of CPT and Lorentz Symmetry Using a K-3He Co-magnetometer. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2005.
[77]  Seltzer, S.J. Developments in Alkali-metal Atomic Magnetometry. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2008.
[78]  Allred, J.C.; Lyman, R.N.; Kornack, T.W.; Romalis, M.V. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 2002, 89, 130801:1–130801:4.
[79]  Kominis, I.K.; Kornack, T.W.; Allred, J.C.; Romalis, M.V. A subfemtotesla multichannel atomic magnetometer. Nature 2003, 422, 596–599.
[80]  Romalis, M.V. Chip-scale magnetometers. Nat. Photonics 2007, 1, 613–614.
[81]  Walker, T.G.; Happer, W. Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 1997, 69, 629–642.
[82]  Seltzer, S.J.; Romalis, M.V. High-temperature alkali vapor cells with antirelaxation surface coatings. J. Appl. Phys. 2009, 106, 114905:1–114905:8.
[83]  Balabas, M.V.; Jensen, K.; Wasilewski, W.; Krauter, H.; Madsen, L.S.; Muller, J.H.; Fernholz, T.; Polzik, E.S. High quality anti-relaxation coating material for alkali atom vapor cells. Opt. Express 2010, 18, 5825–5830.
[84]  Brown, J.M. A New Limit on Lorentz- and CPT-Violating Neutron Spin Interactions Using a K-3He Comagnetometer. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2011.
[85]  Vasilakis, G. Precision Measurements of Spin Interactions with High Density Atomic Vapors. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2012.
[86]  Brown, J.M.; Smullin, S.J.; Kornack, T.W.; Romalis, M.V. New limit on lorentz- and CPT-violating neutron spin interactions. Phys. Rev. Lett. 2010, 105, 151604:1–151604:4.
[87]  Smiciklas, M.; Brown, J.M.; Cheuk, L.W.; Smullin, S.J.; Romalis, M.V. New test of local lorentz invariance using a 21Ne-Rb-K comagnetometer. Phys. Rev. Lett. 2011, 107, 171604:1–171604:5.
[88]  Lust, L.M.; Youngner, D.W. Chip Scale Atomic Gyroscope. U.S. Patent 7,359,059, 15 April 2008.

Full-Text

comments powered by Disqus