All Title Author
Keywords Abstract

Sensors  2012 

Interferometric Fiber Optic Sensors

DOI: 10.3390/s120302467

Keywords: fiber-optic sensors, fiber interferometers, Fabry-Perot interferometers, Mach-Zehnder interferometers, Michelson interferometers, Sagnac interferometers

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

References

[1]  Grattan, K.T.V.; Meggitt, B.T. Optical Fiber Sensor Technology; Chapman & Hall: Orange, CA, USA; p. 1995.
[2]  Overview of Fiber Optic Sensors, Available online: http://www.bluerr.com/images/Overview_of_FOS2.pdf (accessed on 8 February 2012).
[3]  Prerana, P.; Varshney, R.K.; Pal, B.P.; Nagaraju, B. High sensitivie fiber optic temperature sensor based on a side-polished single-mode fiber coupled to a tapered multimode overlay waveguide. J. Opt. Soc. Korea 2010, 14, 337–341, doi:10.3807/JOSK.2010.14.4.337.
[4]  Ferreira, L.A.; Ribeiro, A.B.L.; Santos, J.L.; Farahi, F. Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating. IEEE Photon. Technol. Lett 1996, 8, 1519–1521, doi:10.1109/68.541569.
[5]  Cho, J.Y.; Lim, J.H.; Lee, K.H. Optical fiber twist sensor with two orthogonally oriented mechanically induce long-period grating sections. IEEE Photon. Technol. Lett 2005, 17, 453–455, doi:10.1109/LPT.2004.840073.
[6]  Wang, A.; Xiao, H.; Wang, J.; Wang, Z.; Zhao, W.; May, R.G. Self-calibrated interferometric-intensity-based optical fiber sensors. J. Lightw. Techol 2001, 19, 1495–1501, doi:10.1109/50.956136.
[7]  Kim, D.W.; Shen, F.; Chen, X.; Wang, A. Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor. Opt. Lett 2005, 30, 3000–3002, doi:10.1364/OL.30.003000. 16315701
[8]  Choi, W.S.; Jo, M.S. Accurate evaluation of polarization characteristics in the integrated optic chip for interferometric fiber optic gyroscope based on path-matched interferometry. J. Opt. Soc. Korea 2009, 13, 439–444, doi:10.3807/JOSK.2009.13.4.439.
[9]  Beard, P.C.; Perennes, F.; Draguioti, E.; Mills, T.N. Optical fiber photoacoustic-photothermal probe. Opt. Lett 1998, 23, 1235–1237, doi:10.1364/OL.23.001235. 18087485
[10]  Wang, X.; Xu, J.; Zhu, Y.; Cooper, K.L.; Wang, A. All-fused-silica miniature optical fiber tip pressure sensor. Opt. Lett 2006, 31, 885–887, doi:10.1364/OL.31.000885. 16599200
[11]  Kim, Y.H.; Kim, M.J.; Rho, B.S.; Park, M.S.; Jang, J.-H.; Lee, B.H. Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode. IEEE Sens. J 2011, 11, 1423–1426, doi:10.1109/JSEN.2010.2092423.
[12]  Lanticq, V.; Quiertant, M.; Meriliot, E.; Delepine-Lesoille, S. Brillouin sensing cable: Design and experimental validation. IEEE Sens. J 2008, 8, 1194–1201, doi:10.1109/JSEN.2008.926890.
[13]  Sharma, A.K.; Jha, R.; Gupta, B.D. Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sens. J 2007, 7, 1118–1129, doi:10.1109/JSEN.2007.897946.
[14]  Iadicicco, A.; Campopiano, S.; Cutolo, A.; Giordano, M.; Cusano, A. Refractive index sensor based on microstructured fiber Bragg grating. IEEE Photon. Technol. Lett 2005, 17, 1250–1252, doi:10.1109/LPT.2005.846570.
[15]  Zhang, L.; Lou, J.; Tong, L. Micro/nanofiber optical sensors. Photon. Sen 2011, 1, 31–42, doi:10.1007/s13320-010-0022-z.
[16]  Lee, B.H.; Eom, J.B.; Park, K.S.; Park, S.J.; Ju, M.J. Specialty fiber coupler; Fabrications and applications. J. Opt. Soc. Korea 2010, 14, 326–332, doi:10.3807/JOSK.2010.14.4.326.
[17]  Rao, Y.J. Recent progress in fiber-optic extrinsic Fabry Perot interferometric sensors. Opt. Fiber Technol 2006, 12, 227–237, doi:10.1016/j.yofte.2006.03.004.
[18]  Fabry-Pérot Interferometer, Available online: http://en.wikipedia.org/wiki/Fabry%E2%80%93P%C3%A9rot_interferometer (accessed on 8 February 2012).
[19]  Sirkis, J.S.; Brennan, D.D.; Putman, M.A.; Berkoff, T.A.; Kersey, A.D.; Friebele, E.J. In-line fiber etalon for strain measurement. Opt. Lett 1973, 18, 1973–1975.
[20]  Pedrotti, F.L.; Pedrotti, L.M.; Pedrotti, L.S. Introduction to Optics; Pearson International: Upper Saddle River, NJ, USA, 2007.
[21]  Tsai, W.H.; Lin, C.J. A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor. J. Lightw. Techol 2001, 19, 682–686, doi:10.1109/50.923481.
[22]  Kim, S.H.; Lee, J.J.; Lee, D.C.; Kwon, I.B. A study on the development of transmission-type extrinsic Fabry-Perot interferometric optical fiber sensor. J. Lightw. Techol 1999, 17, 1869–1874, doi:10.1109/50.793768.
[23]  Hunger, D.; Steinmetz, T.; Colombe, Y.; Deutsch, C.; Hansch, T.W.; Reichel1, J. A fiber Fabry-Perot cavity with high finesse. New J. Phys 2010, 12, doi:10.1088/1367-2630/12/6/065038.
[24]  Ran, J.; Rao, Y.; Zhang, J.; Liu, Z.; Xu, B. A miniature fiber-optic refractive-index sensor based on laser-machined Fabry-Perot interferometer tip. J. Lightw. Techol 2009, 27, 5426–5429, doi:10.1109/JLT.2009.2031656.
[25]  Rao, Y.J.; Deng, M.; Duan, D.W.; Yang, X.C.; Zhu, T.; Cheng, G.H. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser. Opt. Express 2007, 15, 14123–14128, doi:10.1364/OE.15.014123. 19550685
[26]  Ran, Z.L.; Rao, Y.J.; Liu, W.J.; Liao, X.; Chiang, K.S. Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt. Express 2008, 16, 2252–2263, doi:10.1364/OE.16.002252. 18542305
[27]  Wei, T.; Han, Y.; Tsai, H.L.; Xiao, H. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser. Opt. Lett 2008, 33, 536–538, doi:10.1364/OL.33.000536. 18347701
[28]  Wan, X.; Taylor, H.F. Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors. Opt. Lett 2002, 27, 1388–1390, doi:10.1364/OL.27.001388. 18026455
[29]  Wang, Z.; Shen, F.; Song, L.; Wang, X.; Wang, A. Multiplexed fiber Fabry-Pérot interferometer sensors based on ultrashort Bragg gratings. IEEE Photon. Technol. Lett 2007, 19, 622–624, doi:10.1109/LPT.2007.894361.
[30]  Zhang, Y.; Chen, X.; Wang, Y.; Cooper, K.L.; Wang, A. Microgap multicavity Fabry-Pérot biosensor. J. Lightw. Techol 2007, 25, 1797–1804, doi:10.1109/JLT.2007.899169.
[31]  Machavaram, V.R.; Badcock, R.A.; Fernando, G.F. Fabrication of intrinsic fibre Fabry-Perot sensors in silica fiPero using hydrofluoric acid etching. Sen. Actuat. A 2007, 138, 248–260, doi:10.1016/j.sna.2007.04.007.
[32]  Zhao, J.R.; Huang, X.G.; He, W.X.; Chen, J.H. High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by Fabry-Perot interference. J. Lightw. Techol 2010, 28, 2799–2803, doi:10.1109/JLT.2010.2065215.
[33]  Morris, P.; Hurrell, A.; Shaw, A.; Zhang, E.; Beard, P. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. J. Acoust. Soc. Am 2009, 125, 3611–3622, doi:10.1121/1.3117437. 19507943
[34]  Koo, K.P.; LeBlanc, M.L.; Tsai, T.E.; Vohra, S.T. Fiber-chirped grating Fabry-Perot sensor with multiple-wavelength-addressable free-spectral ranges. IEEE Photon. Technol. Lett 1998, 10, 1006–1008, doi:10.1109/68.681299.
[35]  Mudhana, G.; Park, K.S.; Ryu, S.Y.; Lee, B.H. Fiber-optic probe based on a bifunctional lensed photonic crystal fiber for refractive index measurements of liquids. IEEE Sens. J 2011, 11, 1178–1183, doi:10.1109/JSEN.2010.2087323.
[36]  Mudhana, G.; Park, K.S.; Lee, B.H. Dispersion measurement of liquids with a fiber optic probe based on a bi-functional lensed photonic crystal fiber. Opt. Commun 2011, 284, 2854–2858, doi:10.1016/j.optcom.2011.02.008.
[37]  Choi, H.Y.; Park, K.S.; Park, S.J.; Paek, U.C.; Lee, B.H.; Choi, E.S. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Opt. Lett 2008, 33, 2455–2457, doi:10.1364/OL.33.002455. 18978885
[38]  Choi, H.Y.; Mudhana, G.; Park, K.S.; Paek, U.C.; Lee, B.H. Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index. Opt. Express 2009, 18, 141–149.
[39]  Park, K.S.; Kim, Y.H.; Eom, J.B.; Park, S.J.; Park, M.S.; Jang, J.H.; Lee, B.H. Compact and multiplexible hydrogen gas sensor assisted by self-referencing technique. Opt. Express 2011, 19, 18190–18198, doi:10.1364/OE.19.018190. 21935185
[40]  Frazao, O.; Aref, S.H.; Baptista, J.M.; Santos, J.L.; Latifi, H.; Farahi, F.; Kobelke, J.; Schuster, K. Fabry-Perot cavity based on a suspended-core fiber for strain and temperature measurement. IEEE Photon. Technol. Lett 2009, 21, 1229–1231, doi:10.1109/LPT.2009.2024645.
[41]  Deng, M.; Tang, C.P.; Zhu, T.; Rao, Y.J. PCF-based Fabry-Perot interferometric sensor for strain measurement at high temperatures. IEEE Photon. Technol. Lett 2011, 23, 700–702, doi:10.1109/LPT.2011.2124452.
[42]  Shi, Q.; Lv, F.; Wang, Z.; Jin, L.; Hu, J.J.; Liu, J.; Kai, G.; Dong, X. Environmentally stable Fabry-Perot-type strain sensor based on hollow-core photonic bandgap fiber. IEEE Photon. Technol. Lett 2008, 20, 237–239, doi:10.1109/LPT.2007.913335.
[43]  Chen, D.; Liu, W.; Jiang, M.; He, S. High-resolution strain/temperature sensing system based on a high-finesse fiber cavity and time-domain wavelength demodulation. J. Lightw. Techol 2009, 27, 2477–2481, doi:10.1109/JLT.2008.2011498.
[44]  Lim, J.H.; Jang, H.S.; Lee, K.S.; Kim, J.C.; Lee, B.H. Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings. Opt. Lett 2004, 29, 346–348, doi:10.1364/OL.29.000346. 14971748
[45]  Kim, Y.J.; Paek, U.C.; Lee, B.H. Measurement of refractive-index variation with temperature by use of long-period fiber gratings. Opt. Lett 2002, 27, 1297–1299, doi:10.1364/OL.27.001297. 18026429
[46]  Allsop, T.; Reeves, R.; Webb, D.J.; Bennion, I. A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer. Rev. Sci. Instrum 2002, 73, 1702–1705, doi:10.1063/1.1459093.
[47]  Kim, Y.H.; Kim, M.J.; Park, M.S.; Jang, J.H.; Kim, K.T.; Lee, B.H. Hydrogen sensor based on a palladium-coated long-period fiber grating pair. J. Opt. Soc. Korea 2008, 12, 221–225, doi:10.3807/JOSK.2008.12.4.221.
[48]  Kim, M.J.; Kim, Y.H.; Lee, B.H. Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair. IEEE Photon. Technol. Lett 2008, 20, 1290–1292, doi:10.1109/LPT.2008.926889.
[49]  Ding, J.-F.; Zhang, A.P.; Shao, L.-Y.; Yan, J.-H.; He, S. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor. IEEE Photon. Technol. Lett 2005, 17, 1247–1249, doi:10.1109/LPT.2005.847437.
[50]  Lee, B.H.; Paek, U.C. Multislit interpretation of cascaded fiber gratings. J. Lightw. Techol 2002, 20, 1750–1761, doi:10.1109/JLT.2002.802209.
[51]  Choi, H.Y.; Kim, M.J.; Lee, B.H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 2007, 15, 5711–5720, doi:10.1364/OE.15.005711. 19532829
[52]  Choi, H.Y.; Park, K.S.; Lee, B.H. Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes. Opt. Lett 2008, 33, 812–814, doi:10.1364/OL.33.000812. 18414541
[53]  Ngyuen, L.V.; Hwang, D.; Moon, S.; Moon, D.S.; Chung, Y.J. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 2008, 16, 11369–11375, doi:10.1364/OE.16.011369. 18648456
[54]  Zhu, J.J.; Zhang, A.P.; Xia, T.H.; He, S.; Xue, W. Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer. IEEE Sens. J 2010, 10, 1415–1418, doi:10.1109/JSEN.2010.2042592.
[55]  Tian, Z.; Yam, S.S.-H.; Barnes, J.; Bock, W.; Greig, P.; Fraser, J.M.; Loock, H.-P.; Oleschuk, R.D. Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photon. Technol. Lett 2008, 20, 626–628, doi:10.1109/LPT.2008.919507.
[56]  Lu, P.; Men, L.; Sooley, K.; Chen, Q. Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature. Appl. Phys. Lett 2009, 94, doi:10.1063/1.3115029.
[57]  Pang, F.; Liu, H.; Guo, H.; Liu, Y.; Zeng, X.; Chen, N.; Chen, Z.; Wang, T. In-fiber Mach-Zehnder interferometer based on double cladding fibers for refractive index sensor. IEEE Sens. J 2011, 11, 2395–2400, doi:10.1109/JSEN.2011.2123885.
[58]  Jiang, L.; Yang, J.; Wang, S.; Li, B.; Wang, M. Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett 2011, 36, 3753–3755, doi:10.1364/OL.36.003753. 21964086
[59]  Frazao, O.; Silva, S.F.O.; Viegas, J.; Baptista, J.M.; Santos, J.L.; Kobelke, J.; Schuster, K. All fiber Mach-Zehnder interferometer based on suspended twin-core fiber. IEEE Photon. Technol. Lett 2010, 22, 1300–1302, doi:10.1109/LPT.2010.2054071.
[60]  Yuan, L.-B.; Zhou, L.M.; Wu, J.S. Fiber optic temperature sensor with duplex Michelson interferometric technique. Sens. Actuat. A 2000, 86, 2–7, doi:10.1016/S0924-4247(00)00357-5.
[61]  Kashyap, R.; Nayar, B. An all single-mode fiber michelson interferometer sensor. J. Lightw. Techol 1983, LT-1, 619–624.
[62]  O’Mahoney, K.T.; O’Byrne, R.P.; Sergeryev, S.V.; Zhang, L.Z; Bennion, I. Short-scan fiber interferometer for high-resolution Bragg grating array interrogation. IEEE Sens. J 2009, 9, 1277–1281, doi:10.1109/JSEN.2009.2029818.
[63]  Zhao, Y.; Ansari, F. Intrinsic single-mode fiber-optic pressure sensor. IEEE Photon. Technol. Lett 2001, 13, 1212–1214, doi:10.1109/68.959367.
[64]  Kim, D.W.; Zhang, Y.; Cooper, K.L.; Wang, A. In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement. Appl. Opt 2005, 44, 5368–5373, doi:10.1364/AO.44.005368. 16161647
[65]  Tian, Z.; Yam, S.S.H.; Loock, H.-P. Single-mode fiber refractive index sensor based on core-offset attenuators. IEEE Photon. Technol. Lett 2008, 16, 1387–1389.
[66]  Brakel, A.V.; Swart, P.L. Temperature-compensated optical fiber Michelson refractometer. Opt. Eng 2005, 44, 1576–1580.
[67]  Park, K.S.; Choi, H.Y.; Park, S.J.; Paek, U.C.; Lee, B.H. Temperature robust refractive index sensor based on a photonic crystal fiber interferometer. IEEE Sens. J 2010, 10, 1147–1148, doi:10.1109/JSEN.2009.2037510.
[68]  Yuan, L.; Yang, J.; Liu, Z. A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer. IEEE Sens. J 2008, 8, 1114–1117, doi:10.1109/JSEN.2008.926873.
[69]  Fu, H.Y.; Tam, H.Y.; Shao, L.Y.; Dong, X.; Wai, P.K.A.; Lu, C.; Khijwania, S.K. Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl. Opt 2008, 47, 2835–2839, doi:10.1364/AO.47.002835. 18493290
[70]  Moon, D.S.; Kim, B.H.; Lin, A.; Sun, G.; Han, T.G.; Han, W.T.; Chung, Y. The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber. Opt. Express 2007, 15, 7962–7967, doi:10.1364/OE.15.007962. 19547123
[71]  Kim, G.; Cho, T.; Hwang, K.; Lee, K.; Lee, K.S.; Han, Y.G.; Lee, S.B. Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer. Opt. Express 2009, 17, 2481–2486, doi:10.1364/OE.17.002481. 19219151
[72]  Baptista, J.M.; Santos, J.L.; Lage, A.S. Self-referenced fibre optic intensity sensor based on a multiple beam Sagnac topology. Opt. Commun 2000, 181, 287–294, doi:10.1016/S0030-4018(00)00784-7.
[73]  Bohnert, K.; Gabus, P.; Nehring, J.; Brandle, H. Temperature and vibration insensitive fiber-optic current sensor. J. Lightw. Techol 2002, 20, 267–276, doi:10.1109/50.983241.
[74]  Zu, P.; Chan, C.C.; Jin, Y.; Gong, T.; Zhang, Y.; Chen, L.H.; Dong, X. A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer. IEEE Photon. Technol. Lett 2011, 23, 920–922, doi:10.1109/LPT.2011.2143400.
[75]  Dong, B.; Hao, J.; Liaw, C.Y.; Xu, Z. Cladding-mode resonance in polarization-maintaining photonic-crystal-fiber-based sagnac interferometer and its application for fiber sensor. J. Lightw. Techol 2011, 29, 1759–1763, doi:10.1109/JLT.2011.2140313.
[76]  Kim, H.M.; Kim, T.H.; Kim, B.; Chung, Y. Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber. IEEE Photon. Technol. Lett 2010, 22, 1539–1541, doi:10.1109/LPT.2010.2068043.
[77]  Kim, H.M.; Kim, T.H.; Kim, B.; Chung, Y. Enhanced transverse load sensitivity by using a highly birefringent photonic crystal fiber with larger air holes on one axis. Appl. Opt 2010, 49, 3841–3845, doi:10.1364/AO.49.003841. 20648154
[78]  Kim, D.H.; Kang, J.U. Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Opt. Express 2004, 12, 4490–4495, doi:10.1364/OPEX.12.004490. 19484000
[79]  Frazao, O.; Baptista, J.M.; Santos, J.L.; Roy, P. Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer. Appl. Opt 2008, 47, 2520–2523, doi:10.1364/AO.47.002520. 18449321
[80]  Spammer, S.J.; Swart, P.L.; Chtcherbakov, A.A. Merged sagnac-michelson interferometer for distributed disturbance detection. J. Lightw. Techol 1997, 15, 972–976, doi:10.1109/50.588669.
[81]  Zhao, C.; Jin, Y.; Kang, J.; Gong, H.; Dong, J. Recent progress of fiber loop mirror-based sensors in China Jiliang University. Photonic Sens 2011, 1, doi:10.1007/s13320-011-0045-0.
[82]  Sun, G.; Moon, D.S.; Chung, Y. Simultaneous temperature and strain measurement using two types of high-birefringence fibers in sagnac loop mirror. IEEE Photon. Technol. Lett 2007, 19, 2027–2029, doi:10.1109/LPT.2007.908775.
[83]  Frazao, O.; Marques, L.M.; Santos, S.; Baptista, J.M.; Santos, J.L. Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror. IEEE Photon. Technol. Lett 2006, 18, 2407–2409, doi:10.1109/LPT.2006.886139.
[84]  Frazao, O.; Santos, J.L.; Baptista, J.M. Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors. IEEE Photon. Technol. Lett 2007, 19, 1260–1262, doi:10.1109/LPT.2007.902263.
[85]  Kim, H.M.; Nam, H.; Moon, D.S.; Kim, Y.H.; Lee, B.H.; Chung, Y. Simultaneous Measurement of Strain and Temperature with High Sensing Accuracy. Proceedings of the 14th OptoElctronics and Communications Conference (OECC 2009), Hong Kong, China, 13–17 July 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal