All Title Author
Keywords Abstract

Sensors  2012 

Novel Principle of Contactless Gauge Block Calibration

DOI: 10.3390/s120303350

Keywords: low-coherence interferometry, gauge block, nanometrology

Full-Text   Cite this paper   Add to My Lib


In this paper, a novel principle of contactless gauge block calibration is presented. The principle of contactless gauge block calibration combines low-coherence interferometry and laser interferometry. An experimental setup combines Dowell interferometer and Michelson interferometer to ensure a gauge block length determination with direct traceability to the primary length standard. By monitoring both gauge block sides with a digital camera gauge block 3D surface measurements are possible too. The principle presented is protected by the Czech national patent No. 302948.


[1]  Doiron, T.; Beers, J. The Gauge Block Handbook. NIST Monograph 180 with Corrections; 145, June 1995, pp. 1–143. Available online: (accessed on 2 March 2012).
[2]  Decker, J.E.; Miles, J.R.; Madej, A.A.; Siemsen, R.F.; Siemsen, K.J.; de Bonth, S.; Bustraan, K.; Temple, S.; Pekelsky, J.R. Increasing the range of unambiguity in step-height measurement with multiple-wavelength interferometry—application to absolute long gauge block measurement. Appl. Opt 2003, 42, 5670–5678, doi:10.1364/AO.42.005670. 14528928
[3]  B?nsch, G. Automatic gauge block measurement by phase stepping interferometry with three laser wavelength. Proc. SPIE 2001, 4401, 1–10.
[4]  Khavinson, V.M. Ring interferometer for two-sided measurement of the absolute lengths of end standards. Appl. Opt 1999, 38, 126–136, doi:10.1364/AO.38.000126. 18305595
[5]  Ishii, Y.; Seino, S. New method for interferometric measurement of gauge blocks without wringing onto a platen. Metrologia 1998, 35, 67–73, doi:10.1088/0026-1394/35/2/1.
[6]  Abdelaty, A.; Walkov, A.; Abou-Zeid, A.; Sch?del, R. PTB’S prototype of a double ended interferometer for measuring the length of gauge blocks. Proceedings of the Simposio de Metrologia, Queretaro, Mexico, 27–29 October 2010; pp. 1–6.
[7]  Dobosz, M.; Iwasinska-Kowalska, O. A new method of non-contact gauge block calibration using a fringe-counting technique: Theory basis. Opt. Laser Tech 2010, 42, 141–148, doi:10.1016/j.optlastec.2009.05.012.
[8]  Iwasinska-Kowalska, O.; Dobosz, M. A new method of non-contact gauge block calibration using a fringe-counting technique: Experimental verification. Opt. Laser Tech 2010, 42, 149–155, doi:10.1016/j.optlastec.2009.05.011.
[9]  Buchta, Z.; Mikel, B.; Lazar, J.; ?íp, O. White-light fringe detection based on novel light source and color CCD camera. Meas. Sci. Tech 2011, 22, 094031, doi:10.1088/0957-0233/22/9/094031.
[10]  Ikonen, E.; Kauppinen, J.; Korkolainen, T.; Luukkainen, J.; Riski, K. Interferometric calibration of gauge blocks by using one stabilized laser and a white-light source. Appl. Opt 1991, 30, 4477–4478, doi:10.1364/AO.30.004477. 20717231
[11]  Dowell, J.H.. Improvements in or relating to Interferometers for Determination of Length, British patent No. 5556721943.
[12]  Karlsson, B.; Ribbing, G.C. Optical constants and spectral selectivity of stainless steel and its oxides. J. Appl. Opt 1982, 53, 6340–6346.
[13]  ?íp, O.; Petr?, F. A scale-linearization method for precise laser interferometry. Meas. Sci. Technol 2000, 11, 133–141, doi:10.1088/0957-0233/11/2/305.
[14]  ?íp, O.; Buchta, Z.; Petr?, F.; Lazar, J. On-line monitoring of the refraction index of air for ultra-precise length measurement in the nano-world. Proceedings of 8th IEEE Africon Conference, Windhoek, Namibia, 26?28 September 2007; pp. 294–298.
[15]  Lazar, J.; ?íp, O.; ?í?ek, M.; Hrabina, J.; Buchta, Z. Suppression of air refractive index variation in high-resolution interferometry. Sensors 2011, 11, 7644–7655, doi:10.3390/s110807644. 22164036
[16]  Ailing, T.; Chunhui, W.; Zhuangde, J.; Hongjun, W.; Bingcai, L. Study on key algorithm for scanning white-light interferometry. Proc. SPIE 2008, 71552N, 1–7.


comments powered by Disqus

Contact Us


微信:OALib Journal