All Title Author
Keywords Abstract

Sensors  2011 

CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms

DOI: 10.3390/s111211664

Keywords: quantum dots, citotoxicity, Trypanosoma cruzi, bacteria, microorganisms

Full-Text   Cite this paper   Add to My Lib


Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus.


[1]  Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.
[2]  Weller, H. Quantum size colloids: From size-dependent properties of discrete particles to self-organized superstructures. Curr. Opin. Colloid Interface Sci 1998, 3, 194–199.
[3]  Almeida, D.B. Pontos Quanticos Coloidais de Semicondutores II–VI Encapados com SiO2M.S. Thesis. Universidade Estadual de Campinas, Campinas, SP, Brazil, April, 2008.
[4]  Weng, J.; Song, X.; Li, L.; Qian, H.; Chen, K.; Xu, X.; Cao, C.; Ren, J. Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging. Talanta 2006, 70, 397–402.
[5]  Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.
[6]  Rockenberger, J.; Troger, L.; Rogach, A.L.; Tischer, M.; Grundmann, M.; Eychmuller, A.; Weller, H. The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals. J. Chem. Phys 1998, 108, 7807–7815.
[7]  Borchert, H.; Talapin, D.V.; Gaponik, N.; McGinley, C.; Adam, S.; Lobo, A.; M?ller, T.; Weller, H. Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS. J. Phys. Chem. B 2003, 107, 9662–9668.
[8]  Tokumasu, F.; Fairhurst, R.M.; Ostera, G.R.; Brittain, N.J.; Hwang, J.; Wellems, T.E.; Dvorak, J.A. Band 3 modifications in Plasmodium falciparum—Infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots. J. Cell Sci 2005, 118, 1091–1098.
[9]  Farias, P.M.A.; Santos, B.S.; Menezes, F.D.; Ferreira, R.; Barjas-Castro, M.L.; Castro, V.; Lima, P.R.M.; Fontes, A.; Cesar, C.L. Investigation of red blood cell antigens with highly fluorescent and stable semiconductor quantum dots. J. Biomed. Opt 2005, doi:10.1117/1.1993257.
[10]  Jaiswall, J.K.; Mattoussi, H.; Mauro, J.M.; Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol 2003, 21, 47–51.
[11]  Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.
[12]  Chan, W.C.; Nie, S. Quantun dot bioconjugate for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.
[13]  Farias, P.M.A.; Santos, B.S.; Menezes, F.D.; Brasil, J.R.A.G.; Ferreira, R.; Motta, M.A.; Castro-Neto, A.G.; Vieira, A.A.S.; Fontes, A.; César, C.L. Highly fluorescent semiconductor core-shell CdTe-CdS nanocrystals for monitoring living yeast cell activity. Appl. Phys. A 2007, 89, 957–961.
[14]  Chaves, C.R. Síntese e Caracteriza??o de Nanopartículas de Sulfeto de Cádmio: Aplica??es BiomédicasM.S. Thesis. Universidade Federal de Pernambuco, Recife, PE, Brazil, September, 2006.
[15]  Lee, L.Y.; Ong, S.L.; Hu, J.Y.; Ng, W.J.; Feng, Y.; Tan, X.; Wong, S.W. Use of semiconductor quantum dots for photostable immunofluorescence labeling of Cryptosporidium parvum. Appl. Environ. Microbiol 2004, 70, 5732–5736.
[16]  Mello, C.B.; Azambuja, P.; Garcia, E.S.; Ratcliffe, N.A. Differential in vitro and in vivo behavior of three strains of Trypanosoma cruzi in the gut and hemolymph of Rhodnius prolixus. Exp. Parasitol 1996, 82, 112–121.
[17]  Araújo, C.A.C.; Mello, C.B.; Jansen, A.M. Trypanosoma cruzi I and Trypanosoma cruzi II: Recognition of sugar structures by Arachis hypogaea (peanut agglutinin) lectin. J. Parasitol 2002, 88, 582–586.
[18]  Ferrari, B.C.; Veal, D. Analysis-only detection of Giardia by combining immunomagnetic separation and two-color flow cytometry. Cytometry A 2003, 51, 79–86.
[19]  Goldman, E.R.; Anderson, G.P.; Tran, P.T.; Mattoussi, H.; Charles, P.T.; Mauro, J.M. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem 2002, 74, 841–847.
[20]  Goldman, E.R.; Mattoussi, H.; Anderson, G.P.; Medintz, I.L.; Mauro, J.M. Fluoroimmunoassays using antibody-conjugated quantum dots methods. Mol. Biol 2005, 303, 19–34.
[21]  Sweeney, E.; Ward, T.H.; Gray, N.; Womack, C.; Jayson, G.; Hughes, A.; Dive, C.; Byers, R. Quantitative multiplexed quantum dots immunohistochemistry. Biochem. Biophys. Res. Commun 2008, 374, 181–186.
[22]  Feder, D.; Gomes, S.A.O.; de Thomaz, A.A.; Almeida, D.B.; Faustino, W.M.; Fontes, A.; Stahl, C.V.; Santos-Mallet, J.R.; Cesar, C.L. In vitro and in vivo documentation of quantum dots labeled Trypanosoma cruzi & Rhodnius prolixus interaction using confocal microscopy. Parasitol. Res 2009, 106, 85–93.
[23]  Zhang, W.; Zhang, L.; Cheng, Y.; Hui, Z.; Zhang, X.; Xie, Y.; Qian, Y. Synthesis of nanocrystalline lead chalcogenides PbE (E = S, Se, or Te) from alkaline aqueous solutions. Mater. Res. Bull 2000, 35, 2009–2015.
[24]  Gaponik, N.; Dmitri, V.T.; Rogach, A.L.; Hoppe, K.; Shevchenko, E.V.; Kornowski, A.; Eychmüller, A.; Weller, H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106, 7177–7185.
[25]  Khatchadourian, R.; Alexia, B.A.; Samuel, J.C.; Heyes, C.D.; Wiseman, P.W.; Jay, L.; Nadeau, J.L. Fluorescence intensity and intermittency as tools for following dopamine bioconjugate processing in living cells. J. Biomed. Biotechnol 2007, doi:10.1155/2007/70145.
[26]  Geho, D.; Lahar, N.; Gurnani, P.; Huebschman, M.; Herrmann, P.; Espina, V.; Shi, A.; Wulfkuhle, J.; Garner, H.; Petricoin, E.; Liotta, L.A.; Rosenblatt, K.P. Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays. Bioconjugate Chem 2005, 16, 559–566.
[27]  Chaves, C.R.; Fontes, A.; Farias, P.M.A.; Santos, B.S.; Menezes, F.D.; Ferreira, R.; Cesar, C.L.; Galembeck, A.; Figueiredo, R.C.B.Q. Application of core-shell pegylated CdS/Cd(OH)2 quantum dots as biolabels of Trypanosoma cruzi parasites. Appl. Surf. Sci 2008, 255, 728–730.
[28]  Marquis, B.J.; Love, S.A.; Braun, K.L.; Haynes, C.L. Analytical methods to assess nanoparticle toxicity. Analyst 2009, 134, 425–439.
[29]  Kitakura, S.; Vanneste, S.; Robert, S.; L?fke, C.; Teichmann, T.; Tanaka, H.; Friml, J. Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 2011, 23, 1920–1931.
[30]  Conner, S.D.; Schimd, S.L. Regulated portals of entry into the cell. Nature 2003, 422, 37–44.
[31]  Luccardinni, C.; Yakovlev, A.; Gaillard, S.; Van’t Hoff, M.; Alberola, A.P.; Mallet, J.M.; Parak, W.J.; Feltz, A.; Oheim, M. Getting across the plasma membrane and beyond: Intracellular uses of colloidal semiconductor nanocrystals. J. Biomed. Biotechnol 2007, doi:10.1155/2007/68963.
[32]  Chithrani, B.D.; Chan, W.C.W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 2007, 7, 1542–1550.
[33]  Jiang, D.; Wang, L.; Jiang, W. Quantitative detection of antibody based on single-molecule counting by total internal reflection fluorescence microscopy with quantum dot labeling. Anal. Chim. Acta 2009, 634, 83–88.
[34]  Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater 2005, 4, 435–446.
[35]  Anas, A.; Okuda, T.; Kawashima, N.; Nakayama, K.; Itoh, T.; Mitsuru, B.V. Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells. ACS Nano 2009, 3, 2419–2429.
[36]  Hoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y.; Ohta, T.; Yasuhara, M.; Suzuki, K.; Yamamoto, K. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 2004, 4, 2163–2169.
[37]  Duan, H.W.; Nie, S.M. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J. Am. Chem. Soc 2007, 129, 3333–3338.
[38]  Yezhelyev, M.V.; Qi, L.F.; O’Regan, R.M.; Nie, S.; Gao, X.H. Proton-sponge coated quantum dots for SiRNA delivery and intracellular imaging. J. Am. Chem. Soc 2008, 130, 9006–9012.
[39]  Jiang, X.; Rocker, C.; Hafner, M.; Brandholt, S.; Dorlich, R.M.; Nienhaus, G.U. Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 2010, 4, 6787–6797.
[40]  Lonhienne, T.G.A.; Sagulenko, E.; Webb, R.I.; Lee, K.C.; Franke, J.; Devos, D.P.; Nouwens, A.; Carrolla, B.J.; Fuerst, J.A. Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc. Natl. Acad. Sci. USA 2010, 107, 12883–12888.
[41]  Demchick, P.; Koch, A.L. The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J. Bacteriol 1996, 178, 768–773.
[42]  Dabbousi, B.O.; J. Rodriguez-Viejo, F.V.; Mikulec, J.R.; Heine, H.; Mattoussi, R.; Ober, K.F.; Jensen, K.F.; Bawendi, M.G. (CdSe)ZnS coreshell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem 1997, B101, 9463–9475.
[43]  Kloepfer, J.A.; Mielke, R.E.; Nadeau, J.L. Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl. Environ. Microbiol 2005, 71, 2548–2557.
[44]  Kaksonen, M.; Toret, C.P.; Drubin, D.G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat. Rev 2006, 7, 404–414.
[45]  Toret, C.P.; Drubin, D.G. The budding yeast endocytic pathway. J. Cell Sci 2006, 119, 4585–4587.
[46]  Galletta, B.J.; Cooper, J.A. Actin and endocytosis: Mechanisms and phylogeny. Curr. Opin. Cell Biol 2009, 21, 20–27.
[47]  Shaw, A.J.; Sz?vényi, P.; Shaw, B. Bryophyte diversity and evolution: Windows into the early evolution of land plants. Am. J. Bot 2011, 98, 352–369.
[48]  Wang, P.; Shen, G. The endocytic adaptor proteins of pathogenic fungi: charting new and familiar pathways. Med. Mycol 2011, 49, 449–457.
[49]  Santos, B.S.; Farias, P.M.A.; Menezes, F.D.; Ferreira, R.; Giorgio, S.; Bosetto, M.C.; Mariano, E.A.; Thomaz, A.A.; Fontes, A.; Cesar, C.L. Molecular differentiation of Leishmania protozoarium using CdS quantum dots as biolabels. Proc. SPIE 2006, doi:10.1117/12.646912.
[50]  Joo, K.I.; Fang, Y.; Liu, Y.; Xiao, L.; Gu, Z.; Tai, A.; Lee, C.L.; Tang, Y.; Wang, P. Enhanced real-time monitoring of adeno-associated virus trafficking by virus-quantum dot conjugates. ACS Nano 2011, 5, 3523–3535.
[51]  Hao, X.; Shang, X.; Wu, J.; Shan, Y.; Cai, M.; Jiang, J.; Huang, Z.; Tang, Z.; Wang, H. Single-particle tracking of hepatitis B virus-like vesicle entry into cells. Small 2011, 7, 1212–1218.
[52]  Liu, H.; Liu, Y.; Liu, S.; Pang, D.W.; Xiao, G. Clathrin-mediated endocytosis in living host cells visualized through quantum dot labeling of infectious hematopoietic necrosis virus. J. Virol 2011, 85, 6252–6262.
[53]  Duszenko, M.; Ivanov, I.E.; Ferguson, M.A.; Plesken, H.; Cross, G.A. Intracellular transport of a variant surface glycoprotein in Trypanosoma brucei. J. Cell Biol 1988, 106, 77–86.
[54]  Morgan, G.W.; Allen, C.L.; Jeffries, T.R.; Hollinshead, M.; Field, M.C. Developmental and morphological regulation of clathrin-mediated endocytosis in Trypanosoma brucei. J. Cell Sci 2001, 114, 2605–2615.
[55]  Field, M.C.; Carrington, M. Intracellular membrane transport systems in Trypanosoma brucei. Traffic 2004, 5, 905–913.
[56]  Derfus, A.M.; Chan, W.C.W.; Bhatia, S.N. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater 2004, 16, 961–966.
[57]  Parak, W.J.; Pellegrino, T.; Plank, C. Labelling of cells with quantum dots. Nanotechology 2005, 16, R9–R21.
[58]  Pelley, J.L.; Daar, A.S.; Saner, M.A. State of academic knowledge on toxicity and biological fate of quantum dots. Toxicol. Sci 2009, 112, 276–296.
[59]  Dumas, E.M.; Ozenne, V.; Mielke, R.E.; Nadeau, J.L. Toxicity of CdTe quantum dots in bacterial strains. IEEE Trans. Nanobiosci 2009, 8, 58–64.
[60]  Wang, X.; Qu, L.; Zhang, J.; Peng, X.; Xiao, M. Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett 2003, 3, 1103–1106.
[61]  Ma, J.; Chen, J.; Guo, J.; Wang, C.C.; Yang, W.L.; Xu, L.; Wang, P.N. Photostability of thiol-capped CdTe quantum dots in living cells: The effect of photo-oxidation. Nano Technol 2006, 17, 2083–2089.
[62]  Aldana, J.; Wang, Y.A.; Peng, X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc 2001, 123, 8844–8850.
[63]  Samia, A.C.S.; Chen, X.; Burda, C. Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc 2003, 125, 15736–15737.
[64]  Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Mu?oz, J.A.; Gaub, H.E.; St?lzle, S.; Fertig, N.; Parak, W.J. Citotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005, 5, 331–338.
[65]  Vicenti, M.; We, E.T.; Malagoli, C.; Bergomi, M.; Vivoli, G. Adverse health effects of selenium in humans. Rev. Environ. Health 2001, 16, 233–251.
[66]  Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559.
[67]  Parak, W.J.; Gerion, D.; Zanchet, D.; Woerz, S.A.; Pellegrino, T.; Micheel, C.; Williams, S.C.; Seitz, M.; Bruehl, R.E.; Bryant, Z.; Bustamante, C.; Bertozzi, C.R.; Alivisatos, P.A. Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem. Mater 2002, 14, 2113–2119.
[68]  Hardman, R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect 2006, 114, 165–172.
[69]  Lovric, J.; Bazzi, H.S.; Cuie, Y.; Fortin, G.R.A.; Winnik, F.M.; Maysinger, D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med 2005, 83, 377–385.
[70]  Stahl, C.V.; Almeida, D.B.; de Thomaz, A.A.; Menna-Barreto, R.F.S.; Santos-Mallet, J.R.; César, C.L.; Gomes, S.A.O.; Feder, D. Studying nanotoxic effects of CdTe Quantum dots in Trypanosoma cruzi. Mem. Inst. Oswaldo Cruz 2011, 106, 158–165.
[71]  Wang, L.; Zheng, H.; Long, Y.; Gao, M.; Hao, J.; Du, J.; Mao, X.; Zhou, D. Rapid determination of the toxicity of quantum dots with luminous bacteria. J. Hazard. Mat 2010, 177, 1134–1137.
[72]  Dumas, E.; Gao, G.; Suffen, D.; Bradforth, S.E.; Dimitrijevic, N.M.; Nadeau, J.L. Interfacial charge transfer between CdTe quantum dots and Gram negative versus Gram positive bacteria. Environ. Sci. Technol 2010, 44, 1464–1470.
[73]  Fu, G.; Vary, P.S.; Lin, C.T. Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B 2005, 109, 8889–8898.
[74]  Rincon, A.G.; Pulgarin, C. Use of coaxial photocatalytic reactor (CAPHORE) in the TiO2 photo-assisted treatment of mixed Escherichia coli and Bacillus subtilis and the bacterial community present wastewater. Catal. Today 2005, 101, 331–334.
[75]  Lyon, D.Y.; Brunet, L.; Hinkal, G.W.; Wiersner, M.R.; Alvarez, P.J. Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano lett 2008, 8, 1539–1543.
[76]  Mashino, T.; Usui, N.; Okuda, K.; Hirota, P.; Mochizuki, M. Respiratory chain inhibition by fullerene derivatives: Hydrogen peroxide production caused by fullerene derivatives and a respiratory chains system. Bioorg. Med. Chem 2003, 11, 1433–1438.
[77]  Silver, S. Bacterial resistances to toxic metal ions—A review. Gene 1996, 179, 9–19.
[78]  Park, S.; Chibli, H.; Wong, J.; Nadeau, J.L. Antimicrobial activity and cellular toxicity of nanoparticle-polymyxin B conjugates. Nanotechnology 2011, 22, 185101–185110.
[79]  Cho, S.J.; Maysinger, D.; Jain, M.; R?der, B.; Hackbarth, S.; Winnik, F.M. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 2007, 23, 1974–1980.
[80]  Tang, M.; Xing, T.; Zeng, J.; Wang, H.; Li, C.; Yin, S.; Yan, D.; Deng, H.; Liu, J.; Wang, M.; Chen, J.; Ruan, D.Y. Unmodified CdSe quantum dots induce elevation of cytoplasmatic calcium levels and impairment of functional properties of sodium channels in rat primary culture hippocampal neurons. Environ. Health Perspect 2008, 116, 915–922.
[81]  Kim, Y.G.; Moon, S.; Kuritzkes, D.R.; Demirci, U. Quantum dot-based HIV capture and imaging in a microfluidic channel. Biosens. Bioelectron 2009, 25, 253–258.
[82]  Rawsthorne, H.; Phister, T.G.; Jaykus, L.A. Development of a fluorescent in situ method for visualization of enteric viruses. Appl. Environ. Microbiol 2009, 75, 7822–7827.
[83]  Schneider, R.; Wolpert, C.; Guilloteau, H.; Balan, L.; Lambert, J.; Merlin, C. The exposure of bacteria to CdTe-core quantum dots: The importance of surface chemistry on cytotoxicity. Nanotechnology 2009, doi:10.1088/0957-4484/20/22/225101.
[84]  Zahavy, E.; Heleg-Shabtai, V.; Zafrani, Y.; Marciano, D.; Yitzhaki, S. Application of fluorescent nanocrystals (Q-dots) for the detection of pathogenic bacteria by flow-cytometry. J. Fluoresc 2010, 20, 389–399.


comments powered by Disqus

Contact Us


微信:OALib Journal