All Title Author
Keywords Abstract

Sensors  2011 

Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

DOI: 10.3390/s110505087

Keywords: biosensor, nanostructures, electrochemical, immobilization

Full-Text   Cite this paper   Add to My Lib


The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D) structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a) fabrication of biomaterials into nanostructures, (b) alignment of the nanostructures and (c) immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications.


[1]  Yogeswaran, U; Chen, S. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 2008, 8, 290–313, doi:10.3390/s8010290.
[2]  Zhao, Z; Lei, W; Zhang, X; Wang, B; Jiang, H. ZnO-based amperometric enzyme biosensors. Sensors 2010, 10, 1216–1231, doi:10.3390/s100201216. 22205864
[3]  Wanekaya, A; Chen, W; Myung, N; Mulchandani, A. Nanowire based electrochemical biosensor. Electroanalysis 2006, 18, 533–550, doi:10.1002/elan.200503449.
[4]  Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol 2004, 22, 47–52, doi:10.1038/nbt927. 14704706
[5]  Kong, J; Franklin, N; Zhou, C; Chapline, M; Peng, S; Cho, K; Dai, H. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625, doi:10.1126/science.287.5453.622. 10649989
[6]  Kong, J; Dai, H. Full and modulated chemical grating of individual carbon nanotubes by organic amine compounds. J. Phys. Chem 2001, 105, 2890–2893, doi:10.1021/jp0037910.
[7]  Cui, Y; Wei, Q; Park, H; Lieber, CM. Nanowire nanosensors for highly sensitive and Selective detection of biological and chemical species. Science 2001, 293, 1289–1292, doi:10.1126/science.1062711. 11509722
[8]  Besteman, K; Lee, J; Wietz, F; Heering, H; Dekker, C. Enzyme coated carbon nanotubes as single-molecule biosensors. Nano Lett 2003, 3, 727–730, doi:10.1021/nl034139u.
[9]  Chen, R; Bangsaruntip, S; Drouvalakis, KA; Kam, NWS; Shim, M; Kim, Y; Li, W; Utz, PJ; Dai, H. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 2003, 100, 4984–4989, doi:10.1073/pnas.0837064100. 12697899
[10]  Hahm, J; Lieber, CM. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowires nanosensors. Nano Lett 2004, 4, 51–54, doi:10.1021/nl034853b.
[11]  Li, Z; Chen, Y; Li, X; Kamins, TI; Nauka, K; Williams, RS. Sequence specific label free DNA sensors based on silicon nanowires. Nano Lett 2004, 4, 245–247, doi:10.1021/nl034958e.
[12]  Malinauskas, A; Malinauskien, J; Ramanavicius, A. Conducting polymer-based nanostructurized materials: Electrochemical aspects. Nanotechnology 2005, 16, R51, doi:10.1088/0957-4484/16/10/R01. 20817958
[13]  Heath, JR. The chemistry of size and order on a nanometer scale. Science 1995, 270, 1315–1316, doi:10.1126/science.270.5240.1315.
[14]  Alivisatos, AP. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937, doi:10.1126/science.271.5251.933.
[15]  Andres, RP; Bielefeld, JD; henderson, JI; Janes, DB; Kolagunta, VR; Kubiak, CP; Mahoney, WJ; Osifchin, RG. Self assembly of a two dimensional super lattice of molecularly linked metal structures. IBID 1996, 273, 1690–1963.
[16]  Mala Ekanayake, EMI; Preethichandra, DMG; Kaneto, K. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosens. Bioelectron 2007, 23, 107–113, doi:10.1016/j.bios.2007.03.022. 17475472
[17]  Li, CM; Sun, CQ; Chen, W; Pan, L. Electrochemical thin film deposition of polypyrrole on different substrates. Surf. Coating. Technol 2005, 198, 474–477, doi:10.1016/j.surfcoat.2004.10.065.
[18]  Malhotra, BD; Chaubey, A; Singh, SP. Prospects of conducting polymers in biosensors. Anal. Chim. Acta 2006, 578, 59–74, doi:10.1016/j.aca.2006.04.055. 17723695
[19]  Rajesh, V; Takashima, W; Kaneto, K. Amperometric tyrosinase based biosensor using an electropolymerized PTS-doped polypyrrole film as an entrapment support. Reactive Funct. Polym 2004, 59, 163–169, doi:10.1016/j.reactfunctpolym.2004.01.006.
[20]  Yamato, K; Kaneto, K. Tubular linear actuators using conducting polymer, polypyrrole. Anal. Chim. Acta 2006, 568, 133–137, doi:10.1016/j.aca.2005.12.030. 17761253
[21]  So, DS; Kang, I; Huh, H; Lee, H. Electrical impedance properties of carbon nanotube composite electrodes for chemical and biosensor. J. Nanosci. Nanotechnol 2010, 10, 3449–3452, doi:10.1166/jnn.2010.2338. 20358976
[22]  Cai, H; Cao, X; Jiang, Y; He, P; Fang, Y. Carbon nanotube enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. Bioanal. Chem 2003, 375, 287–293. 12560975
[23]  Kiessling, M; Speidel, J. Mutual information of MIMO channels in correlated Rayleigh environments-A general solution. Proc. IEEE 2004, 2, 814–818.
[24]  Li, Z; Chen, Y; Li, X. Sequence specific label free DNA sensors based on silicon nanowires. Nano Lett 2004, 4, 245–247, doi:10.1021/nl034958e.
[25]  Gao, ZQ; Agarwal, A; Trigg, AD. Silicon nanowire arrays for label free detection of DNA. Anal. Chem 2007, 79, 3291–3297, doi:10.1021/ac061808q. 17407259
[26]  Kumar, SA; Chen, S. Nanostructured zinc oxide particles in chemically modified electrodes for biosensor applications. Anal. Lett 2008, 41, 141–158, doi:10.1080/00032710701792612.
[27]  Angeli, A; Alessandri, L. The electrochemistry of conducting polymers. Gazz. Chim. Ital 1916, 46, 279–285.
[28]  Bartlett, PN; Cooper, JM. Unenhanced surface raman spectra of self assembled molecules adsorbed on a Au(111) surface. J. Electron Spectros. Relat. Phenom 1993, 1, 363–370.
[29]  Diaz, AF; Kanazawa, KK; Gardini, GP. Electrochemical polymerization of pyrrole. J. Chem. Soc. Chem. Commun 1979, 14, 635–636.
[30]  Wei, Y; Tian, J; Yang, D; Chemie, DM. A new method for polymerization of pyrrole and derivatives. Rapid Commun 1991, 12, 617–623, doi:10.1002/marc.1991.030121103.
[31]  Lee, C; Kang, H; Chang, Y; Hahm, Y. Thermotreatment and chemical resistance of porous alumina membrane prepared by anodic oxidation. Kor. J. Chem. Eng 2000, 17, 266–272, doi:10.1007/BF02699038.
[32]  Tolani, SB; Craig, M; DeLong, RK; Ghosh, K; Wanekaya, AK. Towards biosensors based on conducting polymer nanowires. Anal. Bioanal. Chem 2009, 393, 1225–1231, doi:10.1007/s00216-008-2556-0. 19115054
[33]  Pokroy, B; Epstein, AK; Persson-Gulda, MC; Aizenberg, J. Fabrication of bioinspired actuated nanostructures with arbitrary geometry and stiffness. Adv. Mater 2009, 21, 463–469, doi:10.1002/adma.200801432.
[34]  Demoustier-Champagne, S; Legras, R. Electrosynthesis of polypyrolle nanotubes using particle track-etched membranes as template. J. Phys. Chem. Chem. Phys. Bio 1998, 95, 1200–1203.
[35]  Demoustier-Champagne, S; Ferain, E; Jerome, C; Erome, R; Legras, R. Electrochemically synthesized polypyrrole nanotubules: Effects of different experimental conditions. Eur. Polym. J 1998, 34, 1767–1774, doi:10.1016/S0014-3057(98)00034-2.
[36]  Malinauskas, A; Malinauskien, J; Ramanavicius, A. Conducting polymer based nanostructurized materials: Electrochemical aspects. Nanotechnology 2005, 16, R51, doi:10.1088/0957-4484/16/10/R01. 20817958
[37]  Cristina, G; Mangesh, BA; Baldrich, E; Javier, MF; Mulchandani, A. Conducting polymer nanowire-based chemiresistive biosensor for the detection of bacterial spores. Biosens. Bioelectr 2010, 25, 2309–2312, doi:10.1016/j.bios.2010.03.021.
[38]  Yun, Y; Dong, Z; Shanov, V; Heineman, WR; Halsall, HB; Bhattacharya, A; Conforti, L; Narayan, RK; Ball, WS; Schulz, MJ. Nanotube electrodes and biosensors. Nanotoday 2007, 2, 30–37.
[39]  He, HX; Li, CZ; Tao, NJ. Conductance of polymer nanowires fabricated by a combined electrodeposition and mechanical break junction method. Appl. Phys. Lett 2001, 78, 811–813, doi:10.1063/1.1335551.
[40]  Clark, LC, Jr; Lyons, C; Ann, NY. Electrode systems for continuous monitoring in cardiovascular surgery. Acad. Sci 1962, 102, 29–45.
[41]  Hernandez, RM; Richter, L; Semancik, S; Stranick, S; Mallouk, TE. Template fabrication of protein functionalized gold-polypyrrole-gold segmented nanowires. Chem. Mater 2004, 16, 3431–3438, doi:10.1021/cm0496265.
[42]  Ramanathan, K; Bangar, MA; Yun, M; Chen, W; Myung, NV; Mulchandani, A. Bioaffinity sensing using biologically functionalized conducting polymer nanowire. J. Am. Chem. Soc 2005, 127, 496–497, doi:10.1021/ja044486l. 15643853
[43]  Bangar, MA; Shirale, DJ; Chen, W; Myung, NV; Mulchandani, A. Single conducting polymer nanowire chemiresistive label free immunosensor for cancer biomarker. Anal. Chem 2009, 81, 2168–2175, doi:10.1021/ac802319f. 19281260
[44]  Dan, Y; Cao, Y; Mallouk, TE; Johnson, AT; Evoy, S. Dielectrophoretically assembled polymer nanowires for gas sensing. Sens. Actuat. B 2007, 125, 55–59, doi:10.1016/j.snb.2007.01.042.
[45]  Zhao, Q; Gan, Z; Zhuang, Q. Electrochemical sensors based on carbon nanotubes. Electroanalysis 2002, 14, 1609–1613, doi:10.1002/elan.200290000.
[46]  Musameh, M; Wang, J; Merkoci, A; Lin, Y. Low potential stable NADH detection at carbon nanotube modified glassy carbon electrodes. Electrochem. Commun 2002, 4, 743–746, doi:10.1016/S1388-2481(02)00451-4.
[47]  Gooding, JJ; Wibowo, R; Liu, JQ; Yang, W; Losic, D; Orbons, S; Mearns, FJ; Shapter, JG; Hibbert, DB. Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc 2003, 125, 9006–9007, doi:10.1021/ja035722f. 15369344
[48]  Yu, X; Chattopadhyay, D; Galeska, I; Papadimitrakopoulos, F; Rusling, JF. Peroxidase activity of enzymes bound to the ends of single walled carbon nanotube forest electrodes. Electrochem. Commun 2003, 5, 408–411, doi:10.1016/S1388-2481(03)00076-6.
[49]  Iijima, S; Ichihashi, T. Single shell carbon nanotubes of 1nm diameter. Nature 1993, 363, 603–605, doi:10.1038/363603a0.
[50]  Bethune, DS; Kiang, CH; de Vries, MS; Gorman, G; Savoy, R; Vazquez, J; Beyers, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605–606, doi:10.1038/363605a0.
[51]  Davis, JJ; Coleman, K; Azamian, B; Bagshaw, C; Green, ML. Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem. Eur. J 2003, 9, 3732–3739, doi:10.1002/chem.200304872. 12916096
[52]  Baughman, RH; Zakhidov, A; de Heer, WA. Carbon nanotubes—The route toward applications. Science 2002, 297, 787–792, doi:10.1126/science.1060928. 12161643
[53]  Khare, R; Bose, S. Carbon nanotube based composites—A review. J. Miner. Mater. Character. Eng 2005, 4, 31–46.
[54]  Maehashi, K; Matsumoto, K. Label free electrical detection using carbon nanoptube based biosensors. Sensors 2009, 9, 5368–5378, doi:10.3390/s90705368. 22346703
[55]  Huang, Y; Duan, X; Wei, Q; Lieber, CM. Directed assembly of one dimensional nanostructures into functional networks. Science 2001, 291, 630–633, doi:10.1126/science.291.5504.630. 11158671
[56]  Zhang, Y; Chang, A; Cao, J; Wang, Q; Kim, W; Li, Y; Morris, N; Yenilmez, E; Kong, J; Dai, H. Electric-field directed growth of aligned single wall carbon nanotubes. Appl. Phys. Lett 2001, 79, 3155–3157, doi:10.1063/1.1415412.
[57]  Gao, J; Yu, A; Itkis, ME; Bekyarova, E; Zhao, B; Niyogi, S; Haddon, RC. Large scale fabrication of aligned single walled carbon nanotube array and hierarchical single walled carbon nanotube assembly. J. Am. Chem. Soc 2004, 126, 16698–16699, doi:10.1021/ja044499z. 15612688
[58]  Druzhinina, T; Hoeppener, S; Schubert, US. Strategies for Post-Synthesis Alignment and Immobilization of Carbon Nanotubes. Adv. Mater 2011, 23, 953–970, doi:10.1002/adma.201003509. 21181769
[59]  Kumar, MS; Lee, SH; Kim, TY; Kim, TH; Song, SM; Yang, JW; Nahm, KS; Suh, EK. DC electric field assisted alignment of carbon nanotubes on metal electrodes. Solid State Elect 2003, 47, 2075–2080, doi:10.1016/S0038-1101(03)00258-2.
[60]  Liu, Y; Chung, J-H; Liu, WK; Ruoff, RS. Dielectrophoretic assembly of nanowires. J. Phys. Chem. B 2006, 110, 14098–14106, doi:10.1021/jp061367e. 16854106
[61]  Chung, J; Lee, J. Nanoscale gap fabrication and integration of carbon nanotubes by micromachining. Sens. Actuat. A 2003, 104, 229–235, doi:10.1016/S0924-4247(03)00025-6.
[62]  Chung, J; Lee, K-H; Lee, J; Ruoff, RS. Toward large-scale integration of carbon nanotubes. Langmuir 2004, 20, 3011–3017, doi:10.1021/la035726y. 15875821
[63]  Matsui, H; Gologan, B. Crystalline glycylglycine bolaamphiphile tubules and their ph sensitive structural transformation. J. Phys. Chem. B 2000, 104, 3383–3386, doi:10.1021/jp994117p.
[64]  Kogiso, M; Ohnishi, S; Yase, K; Masuda, M; Shimizu, T. Dicarboxylic oligopeptide bolaamphiphiles: Proton triggered self assembly of microtubes with loose solid surfaces. Langmuir 1998, 14, 4978–4986, doi:10.1021/la9802419.
[65]  Djalali, R; Chen, Y-F; Matsui, H. Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates. J. Am. Chem. Soc 2003, 125, 5873–5879, doi:10.1021/ja0299598. 12733928
[66]  Djalali, R; Chen, Y-F; Matsui, H. Au nanowire fabrication from sequenced histidine rich peptide. J. Am. Chem. Soc 2002, 124, 13660–13661, doi:10.1021/ja028261r. 12431080
[67]  O’Connor, M; Kim, SN; Killard, AJ; Forster, RJ; Smyth, MR; Papadimitrakopoulos, F; Rusling, JF. Mediated amperometric immunosensing using single walled carbon nanotube forests. Analyst 2004, 129, 1176–1180, doi:10.1039/b412805b. 15565214
[68]  Fu, K; Sun, YP. Dispersion and solubilization of carbon nanotubes. J. Nanosci. Nanotechnol 2003, 3, 351–364, doi:10.1166/jnn.2003.225. 14733142
[69]  Huang, TS; Tzeng, Y; Liu, YK; Chen, YC; Alker, KRW; Guntupalli, R; Liu, C. Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diamond Relat. Mater 2004, 13, 1098–1102, doi:10.1016/j.diamond.2003.11.047.
[70]  Huang, W; Taylor, S; Fu, K; Lin, Y; Zhang, D; Hanks, TW; Rao, AM; Sun, YP. Attaching proteins to carbon nanotubes via diimide activated amidation. Nano Lett 2002, 2, 311–314, doi:10.1021/nl010095i.
[71]  Dwyer, C; Guthold, M; Falvo, M; Washburn, S; Superfine, R; Erie, D. DNA functionalized single walled carbon nanotubes. Nanotechnology 2002, 13, 601–604, doi:10.1088/0957-4484/13/5/311.
[72]  Zheng, M; Jagota, A; Semke, ED; Diner, BA; McLean, RS; Lustig, SR; Richardson, RE; Tassi, NG. DNA assisted dispersion and separation of carbon nanotubes. Nat. Mater 2003, 2, 338–342, doi:10.1038/nmat877. 12692536
[73]  Bekyarova, E; Ni, Y; Malarkey, EB; Montana, V; McWilliams, JL; Haddon, RC; Parpura, V. Applications of carbon nanotubes in biotechnology and biomedicine. J. Biomed. Nanotechnol 2005, 1, 3–17, doi:10.1166/jbn.2005.004. 19763242
[74]  Jithesh, V; Ye, Y. Development of immunosensors using carbon nanotubes. Biotechnol. Prog 2007, 23, 517–531. 17458980
[75]  Besteman, K; Lee, JO; Wiertz, FG; Heering, HA; Dekker, C. Enzyme coated carbon nanotubes as single molecule biosensors. Nano Lett 2003, 3, 727–730, doi:10.1021/nl034139u.
[76]  Chen, RJ; Bangsaruntip, S; Drouvalakis, KA; Kam, NWS; Shim, M; Li, Y; Kim, W; Utz, PJ; Dai, H. Non covalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 2003, 100, 4984–4989, doi:10.1073/pnas.0837064100. 12697899
[77]  Boussaad, S; Tao, NJ; Zhang, R; Hopson, T; Nagahara, LA. In situ detection of cytochrome C adsorption with single walled carbon nanotube device. Chem Commun 2003, doi:10.1039/B302681G..
[78]  Wohlstadter, JN; Wilbur, JL; Sigal, GB; Biebuyck, HA; Billadeau, MA; Dong, L; Fischer, AB; Gudibande, SR; Jameison, SH; Kenten, JH; Leginus, J; Leland, JK; Massey, RJ; Wohlstadter, S. Carbon nanotube based biosensor. J. Adv. Mater 2003, 15, 1184–1187, doi:10.1002/adma.200304259.
[79]  Keren, K; Berman, RS; Buchstab, E; Sivan, U; Braun, E. DNA template carbon nanotube field effect transistor. Science 2003, 302, 1380–1382, doi:10.1126/science.1091022. 14631035
[80]  Star, A; Gabriel, JCP; Bradley, K; Gruner, G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett 2003, 3, 459–463, doi:10.1021/nl0340172.
[81]  Liu, J; Goud, J; Raj, PM; Iyer, M; Wang, ZL; Tummala, RR. Real time protein detection using ZnO nanowire/thin film biosensor integrated with microfluidic system. IEEE ECTC 2008, 58, 1317–1322.
[82]  Lévy-Clément, C; Tena-Zaera, R; Ryan, MA; Katty, A; Hodes, G. Nanostructured CdSe sensitized p-CuSCN/nanowire n-ZnO heterojunctions. Adv. Mater 2005, 17, 1512–1515, doi:10.1002/adma.200401848.
[83]  Law, M; Greene, LE; Johnson, JC; Saykally, R; Yang, R. Nanowire dye sensitized solar cells. Nat. Mater 2005, 4, 455–459, doi:10.1038/nmat1387. 15895100
[84]  Diettrich, T; Koeven, D; Rusu, M; Belaidi, A; Tornow, J; Schwartzburg, K; Lux-Steiner, M. Current voltage characteristics and mechanism of solar cells based on ZnO nanrods/In2S3/CuSCN. Appl. Phys. Lett 2008, 93, 053113, doi:10.1063/1.2969291.
[85]  Tien, LC; Sadik, PW; Norton, DP; Voss, LF; Pearton, SJ; Wang, HT; Kang, BS; Ren, F; Jun, J; Lin, J. Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl. Phys. Lett 2005, 87, 222106, doi:10.1063/1.2136070.
[86]  K?nenkamp, R; Word, R; Godinez, M. Ultraviolet electroluminescence from ZnO/polymer heterojunction light emitting diodes. Nano Lett 2005, 5, 2005–2008, doi:10.1021/nl051501r. 16218727
[87]  Zhang, XT; Sato, O; Fujishima, A. Water ultrarepellency induced by nanocolumnar ZnO surface. Langmuir 2004, 20, 6065–6067, doi:10.1021/la049471f. 16459630
[88]  Badre, C; Pauporte, T; Turmine, M; Lincot, D. A Zno array nanofilm with stable high water repellent properties. Nanotechnology 2007, 18, 365705, doi:10.1088/0957-4484/18/36/365705.
[89]  Badre, C; Pauporte, T; Turmine, M; Dubot, P; Lincot, D. Water repllent ZnO nanowires obtained by octadecysilane self assembled monolayers. Phys. E 2008, 40, 2454–2456, doi:10.1016/j.physe.2007.10.016.
[90]  Xiang, B; Wang, P; Zhang, X; Dayeh, SA; Aplin, DPR; Soci, C; Yu, D; Wang, D. Rational synthesis of p-type ZnO arrays using simple chemical vapor deposition. Nano Lett 2007, 7, 323–328, doi:10.1021/nl062410c. 17297995
[91]  Zhang, XH; Chua, SJ; Yong, AM; Yang, HY; Lau, SP; Yu, SF; Sun, WW; Miao, L; Tanemura, M; Tanemura, S. Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method. Appl. Phys. Lett 2007, 90, 013107, doi:10.1063/1.2429019.
[92]  Sun, Y; Fuge, GM; Ashfold, MNR. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods. Chem. Phys. Lett 2004, 396, 21–26, doi:10.1016/j.cplett.2004.07.110.
[93]  Vayssières, L. Growth of arrayed nanorods and of nanowires of ZnO from aqueous solutions. Adv. Mater 2003, 15, 464–466, doi:10.1002/adma.200390108.
[94]  Krunks, M; Dedova, T; A?ik, IO. Spray pyrolysis deposition of zinc oxide nanostructured layers. Thin Solid Films 2006, 515, 1157–1160, doi:10.1016/j.tsf.2006.07.134.
[95]  Peulon, S; Lincot, D. Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films. Adv. Mater 1996, 8, 166–170, doi:10.1002/adma.19960080216.
[96]  Yogeswaran, U; Chen, S. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 2008, 8, 290–313, doi:10.3390/s8010290.
[97]  Li, Q; Kumar, V; Li, Y; Zhang, H; Marks, TJ; Chang, RPH. Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem. Mater 2005, 17, 1001–1006, doi:10.1021/cm048144q.
[98]  Lee, SH; Minegishi, T; Park, JS; Park, SH; Ha, J-S; Lee, H-J; Lee, H-J; Ahn, S; Kim, J; Jeon, H; Yao, T. Ordered arrays of ZnO nanorods grown on periodically polarity-inverted surfaces. Nano Lett 2008, 8, 2419–2422, doi:10.1021/nl801344s. 18576694
[99]  Wang, CH; Wong, AS; Ho, GW. Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays. Langmuir 2007, 23, 11960–11963, doi:10.1021/la702296q. 17941655
[100]  Peulon, S; Lincot, D. Mechanical study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride flims from oxygenated aqueous zinc chloride solutions. J. Electrochem. Soc 1998, 145, 864–874, doi:10.1149/1.1838359.
[101]  Mastai, Y; Gal, D; Hodes, G. Nanocrystal-size control of electrodeposited nanocrystalline semiconductor films by surface capping. J. Electrochem. Soc 2000, 147, 1435–1439, doi:10.1149/1.1393373.
[102]  Pauporte, T; Bataillle Jouland, L; Vermersch, FJ. Well aligned ZnO nanowire arrays prepared by seed layer free electrodeposition and their cassie wenzel transition after hydrophobization. J. Phys. Chem. C 2010, 114, 194–202, doi:10.1021/jp9087145.
[103]  Choi, A; Kim, K; Jung, H-I; Lee, SY. ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode. Sens. Actuat. B 2010, 148, 577–582, doi:10.1016/j.snb.2010.04.049.
[104]  Corso, CD; Dickherber, A; Hunt, WD. An investigation of antibody immobilization methods employing organosilanes on planar ZnO surfaces for biosensor applications. Biosens. Bioelectr 2008, 24, 805–811, doi:10.1016/j.bios.2008.07.011.


comments powered by Disqus