All Title Author
Keywords Abstract

Toxins  2010 

Tetanus Toxin C-Fragment: The Courier and the Cure?

DOI: 10.3390/toxins2112622

Keywords: tetanus toxin C-fragment, therapeutic molecules, gene therapy, retrograde transport, neurodegenerative disease, motor neuron disease

Full-Text   Cite this paper   Add to My Lib


In many neurological disorders strategies for a specific delivery of a biological activity from the periphery to the central nervous system (CNS) remains a considerable challenge for successful therapy. Reporter assays have established that the non-toxic C?fragment of tetanus toxin (TTC), provided either as protein or encoded by non-viral naked DNA plasmid, binds pre-synaptic motor neuron terminals and can facilitate the retrograde axonal transport of desired therapeutic molecules to the CNS. Alleviated symptoms in animal models of neurological diseases upon delivery of therapeutic molecules offer a hopeful prospect for TTC therapy. This review focuses on what has been learned on TTC-mediated neuronal targeting, and discusses the recent discovery that, instead of being merely a carrier molecule, TTC itself may well harbor neuroprotective properties.


[1]  Borasio, G.D.; Robberecht, W.; Leigh, P.N.; Emile, J.; Guiloff, R.J.; Jerusalem, F.; Silani, V.; Vos, P.E.; Wokke, J.H.; Dobbins, T. A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. European ALS/IGF-I Study Group. Neurology?1998, 51, 583–586. 9710040
[2]  Thorne, R.G.; Frey, W.H., 2nd. Delivery of neurotrophic factors to the central nervous system: Pharmacokinetic considerations. Clin. Pharm.?2001, 40, 907–946, doi:10.2165/00003088-200140120-00003.
[3]  Porteus, M.H.; Connelly, J.P.; Pruett, S.M. A look to future directions in gene therapy research for monogenic diseases. PLoS Genet?2006, 2, e133, doi:10.1371/journal.pgen.0020133. 17009872
[4]  Lalli, G.; Gschmeissner, S.; Schiavo, G. Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons. J. Cell Sci.?2003, 116, 4639–4650, doi:10.1242/jcs.00727. 14576357
[5]  Moreno-Igoa, M.; Calvo, A.C.; Penas, C.; Manzano, R.; Olivan, S.; Munoz, M.J.; Mancuso, R.; Zaragoza, P.; Aguilera, J.; Navarro, X.; Osta Pinzolas, R. Fragment C of tetanus toxin, more than a carrier. Novel perspectives in non-viral ALS gene therapy. J. Mol. Med.?2009, 88, 297–308.
[6]  Farrar, J.J.; Yen, L.M.; Cook, T.; Fairweather, N.; Binh, N.; Parry, J.; Parry, C.M. Tetanus. J. Neurol. Neurosurg. Psychiatr.?2000, 69, 292–301, doi:10.1136/jnnp.69.3.292. 10945801
[7]  Turton, K.; Chaddock, J.A.; Acharya, K.R. Botulinum and tetanus neurotoxins: Structure, function and therapeutic utility. Trends Biochem. Sci.?2002, 27, 552–558, doi:10.1016/S0968-0004(02)02177-1. 12417130
[8]  Price, D.L.; Griffin, J.; Young, A.; Peck, K.; Stocks, A. Tetanus toxin: Direct evidence for retrograde intraaxonal transport. Science?1975, 188, 945–947, doi:10.1126/science.49080. 49080
[9]  Schiavo, G.; Benfenati, F.; Poulain, B.; Rossetto, O.; Polverino de Laureto, P.; DasGupta, B.R.; Montecucco, C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature?1992, 359, 832–835, doi:10.1038/359832a0. 1331807
[10]  Schiavo, G.; Matteoli, M.; Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev.?2000, 80, 717–766. 10747206
[11]  Boquet, P.; Duflot, E. Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proc. Natl. Acad. Sci. USA?1982, 79, 7614–7618, doi:10.1073/pnas.79.24.7614. 6296842
[12]  Bizzini, B.; Grob, P.; Akert, K. Papain-derived fragment IIc of tetanus toxin: Its binding to isolated synaptic membranes and retrograde axonal transport. Brain Res.?1981, 210, 291–299, doi:10.1016/0006-8993(81)90902-1. 6164441
[13]  Fishman, P.S.; Savitt, J.M. Transsynaptic transfer of retrogradely transported tetanus protein-peroxidase conjugates. Exp. Neurol.?1989, 106, 197–203, doi:10.1016/0014-4886(89)90094-0. 2478384
[14]  Halpern, J.L.; Loftus, A. Characterization of the receptor-binding domain of tetanus toxin. J. Biol. Chem.?1993, 268, 11188–11192. 8388386
[15]  Herreros, J.; Lalli, G.; Schiavo, G. C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochem. J.?2000, 347, 199–204, doi:10.1042/0264-6021:3470199. 10727419
[16]  Cosker, K.E.; Courchesne, S.L.; Segal, R.A. Action in the axon: Generation and transport of signaling endosomes. Curr. Opin. Neurobiol.?2008, 18, 270–275, doi:10.1016/j.conb.2008.08.005. 18778772
[17]  Bizzini, B.; Stoeckel, K.; Schwab, M. An antigenic polypeptide fragment isolated from tetanus toxin: chemical characterization, binding to gangliosides and retrograde axonal transport in various neuron systems. J. Neurochem.?1977, 28, 529–542, doi:10.1111/j.1471-4159.1977.tb10423.x. 67185
[18]  Chen, C.; Baldwin, M.R.; Barbieri, J.T. Molecular basis for tetanus toxin coreceptor interactions. Biochemistry?2008, 47, 7179–7186, doi:10.1021/bi800640y. 18543947
[19]  Dimpfel, W.; Huang, R.T.; Habermann, E. Gangliosides in nervous tissue cultures and binding of 125I-labelled tetanus toxin, a neuronal marker. J. Neurochem.?1977, 29, 329–334, doi:10.1111/j.1471-4159.1977.tb09626.x. 196046
[20]  Herreros, J.; Ng, T.; Schiavo, G. Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol. Biol. Cell?2001, 12, 2947–2960. 11598183
[21]  Rogers, T.B.; Snyder, S.H. High affinity binding of tetanus toxin to mammalian brain membranes. J. Biol. Chem.?1981, 256, 2402–2407. 6257717
[22]  Walton, K.M.; Sandberg, K.; Rogers, T.B.; Schnaar, R.L. Complex ganglioside expression and tetanus toxin binding by PC12 pheochromocytoma cells. J. Biol. Chem.?1988, 263, 2055–2063. 3339002
[23]  Deinhardt, K.; Berninghausen, O.; Willison, H.J.; Hopkins, C.R.; Schiavo, G. Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. J. Cell Biol.?2006, 174, 459–471, doi:10.1083/jcb.200508170. 16880274
[24]  Roux, S.; Colasante, C.; Saint Cloment, C.; Barbier, J.; Curie, T.; Girard, E.; Molgo, J.; Brulet, P. Internalization of a GFP-tetanus toxin C-terminal fragment fusion protein at mature mouse neuromuscular junctions. Mol. Cell Neurosci.?2005, 30, 572–582. 16456925
[25]  Bohnert, S.; Schiavo, G. Tetanus toxin is transported in a novel neuronal compartment characterized by a specialized pH regulation. J. Biol. Chem.?2005, 280, 42336–42344, doi:10.1074/jbc.M506750200. 16236708
[26]  Deinhardt, K.; Salinas, S.; Verastegui, C.; Watson, R.; Worth, D.; Hanrahan, S.; Bucci, C.; Schiavo, G. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron?2006, 52, 293–305, doi:10.1016/j.neuron.2006.08.018. 17046692
[27]  Hafezparast, M.; Klocke, R.; Ruhrberg, C.; Marquardt, A.; Ahmad-Annuar, A.; Bowen, S.; Lalli, G.; Witherden, A.S.; Hummerich, H.; Nicholson, S.; Morgan, P.J.; Oozageer, R.; Priestley, J.V.; Averill, S.; King, V.R.; Ball, S.; Peters, J.; Toda, T.; Yamamoto, A.; Hiraoka, Y.; Augustin, M.; Korthaus, D.; Wattler, S.; Wabnitz, P.; Dickneite, C.; Lampel, S.; Boehme, F.; Peraus, G.; Popp, A.; Rudelius, M.; Schlegel, J.; Fuchs, H.; Hrabe de Angelis, M.; Schiavo, G.; Shima, D.T.; Russ, A.P.; Stumm, G.; Martin, J.E.; Fisher, E.M. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science?2003, 300, 808–812, doi:10.1126/science.1083129. 12730604
[28]  Evinger, C.; Erichsen, J.T. Transsynaptic retrograde transport of fragment C of tetanus toxin demonstrated by immunohistochemical localization. Brain Res.?1986, 380, 383–388, doi:10.1016/0006-8993(86)90241-6. 2428427
[29]  Schwab, M.; Agid, Y.; Glowinski, J.; Thoenen, H. Retrograde axonal transport of 125I-tetanus toxin as a tool for tracing fiber connections in the central nervous system; connections of the rostral part of the rat neostriatum. Brain Res.?1977, 126, 211–224, doi:10.1016/0006-8993(77)90722-3. 67875
[30]  Schwab, M.E.; Thoenen, H. Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: An autoradiographic and morphometric study. Brain Res.?1976, 105, 213–227, doi:10.1016/0006-8993(76)90422-4. 1260442
[31]  Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct gene transfer into mouse muscle in vivo. Science?1990, 247, 1465–1468, doi:10.1126/science.1690918. 1690918
[32]  Fishman, P.S.; Savitt, J.M.; Farrand, D.A. Enhanced CNS uptake of systemically administered proteins through conjugation with tetanus C-fragment. J. Neurol. Sci.?1990, 98, 311–325, doi:10.1016/0022-510X(90)90272-O. 2243237
[33]  Beaude, P.; Delacour, A.; Bizzini, B.; Domuado, D.; Remy, M.H. Retrograde axonal transport of an exogenous enzyme covalently linked to B-IIb fragment of tetanus toxin. Biochem. J.?1990, 271, 87–91. 1699518
[34]  Knight, A.; Carvajal, J.; Schneider, H.; Coutelle, C.; Chamberlain, S.; Fairweather, N. Non-viral neuronal gene delivery mediated by the HC fragment of tetanus toxin. Eur. J. Biochem.?1999, 259, 762–769. 10092862
[35]  Coen, L.; Osta, R.; Maury, M.; Brulet, P. Construction of hybrid proteins that migrate retrogradely and transynaptically into the central nervous system. Proc. Natl. Acad. Sci. USA?1997, 94, 9400–9405, doi:10.1073/pnas.94.17.9400. 9256494
[36]  Miana-Mena, F.J.; Munoz, M.J.; Ciriza, J.; Soria, J.; Brulet, P.; Zaragoza, P.; Osta, R. Fragment C tetanus toxin: A putative activity-dependent neuroanatomical tracer. Acta Neurobiol. Exp. (Wars)?2003, 63, 211–218. 14518512
[37]  Miana-Mena, F.J.; Munoz, M.J.; Roux, S.; Ciriza, J.; Zaragoza, P.; Brulet, P.; Osta, R. A non-viral vector for targeting gene therapy to motoneurons in the CNS. Neurodegener. Dis.?2004, 1, 101–108, doi:10.1159/000080050. 16908981
[38]  Coen, L.; Kissa, K.; le Mevel, S.; Brulet, P.; Demeneix, B.A. A somatic gene transfer approach using recombinant fusion proteins to map muscle-motoneuron projections in Xenopus spinal cord. Int. J. Dev. Biol.?1999, 43, 823–830. 10707906
[39]  Miana-Mena, F.J.; Roux, S.; Benichou, J.C.; Osta, R.; Brulet, P. Neuronal activity-dependent membrane traffic at the neuromuscular junction. Proc. Natl. Acad. Sci. USA?2002, 99, 3234–3239, doi:10.1073/pnas.052023599. 11880654
[40]  Kissa, K.; Mordelet, E.; Soudais, C.; Kremer, E.J.; Demeneix, B.A.; Brulet, P.; Coen, L. In vivo neuronal tracing with GFP-TTC gene delivery. Mol. Cell Neurosci.?2002, 20, 627–637, doi:10.1006/mcne.2002.1141. 12213444
[41]  Maskos, U.; Kissa, K.; St Cloment, C.; Brulet, P. Retrograde trans-synaptic transfer of green fluorescent protein allows the genetic mapping of neuronal circuits in transgenic mice. Proc. Natl. Acad. Sci. USA?2002, 99, 10120–10125, doi:10.1073/pnas.152266799. 12114537
[42]  Sakurai, T.; Nagata, R.; Yamanaka, A.; Kawamura, H.; Tsujino, N.; Muraki, Y.; Kageyama, H.; Kunita, S.; Takahashi, S.; Goto, K.; Koyama, Y.; Shioda, S.; Yanagisawa, M. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron?2005, 46, 297–308, doi:10.1016/j.neuron.2005.03.010. 15848807
[43]  Perreault, M.C.; Bernier, A.P.; Renaud, J.S.; Roux, S.; Glover, J.C. C fragment of tetanus toxin hybrid proteins evaluated for muscle-specific transsynaptic mapping of spinal motor circuitry in the newborn mouse. Neuroscience?2006, 141, 803–816, doi:10.1016/j.neuroscience.2006.04.008. 16713105
[44]  Sapir, T.; Geiman, E.J.; Wang, Z.; Velasquez, T.; Mitsui, S.; Yoshihara, Y.; Frank, E.; Alvarez, F.J.; Goulding, M. Pax6 and engrailed 1 regulate two distinct aspects of renshaw cell development. J. Neurosci.?2004, 24, 1255–1264, doi:10.1523/JNEUROSCI.3187-03.2004. 14762144
[45]  Perlson, E.; Maday, S.; Fu, M.M.; Moughamian, A.J.; Holzbaur, E.L. Retrograde axonal transport: pathways to cell death? Trends Neurosci.?2010, 33, 335–344. 20434225
[46]  Schellingerhout, D.; Le Roux, L.G.; Bredow, S.; Gelovani, J.G. Fluorescence imaging of fast retrograde axonal transport in living animals. Mol. Imaging?2009, 8, 319–329. 20003890
[47]  Matteoli, M.; Verderio, C.; Rossetto, O.; Iezzi, N.; Coco, S.; Schiavo, G.; Montecucco, C. Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proc. Natl. Acad. Sci. USA?1996, 93, 13310–13315, doi:10.1073/pnas.93.23.13310. 8917587
[48]  Dobrenis, K.; Joseph, A.; Rattazzi, M.C. Neuronal lysosomal enzyme replacement using fragment C of tetanus toxin. Proc. Natl Acad. Sci. USA?1992, 89, 2297–2301, doi:10.1073/pnas.89.6.2297. 1532255
[49]  Martino, S.; di Girolamo, I.; Cavazzin, C.; Tiribuzi, R.; Galli, R.; Rivaroli, A.; Valsecchi, M.; Sandhoff, K.; Sonnino, S.; Vescovi, A.; Gritti, A.; Orlacchio, A. Neural precursor cell cultures from GM2 gangliosidosis animal models recapitulate the biochemical and molecular hallmarks of the brain pathology. J. Neurochem.?2009, 109, 135–147, doi:10.1111/j.1471-4159.2009.05919.x. 19166507
[50]  Rosen, D.R.; Siddique, T.; Patterson, D.; Figlewicz, D.A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O'Regan, J.P.; Deng, H.X.; et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature?1993, 362, 59–62. 8446170
[51]  Przedborski, S.; Kostic, V.; Jackson-Lewis, V.; Naini, A.B.; Simonetti, S.; Fahn, S.; Carlson, E.; Epstein, C.J.; Cadet, J.L. Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J. Neurosci.?1992, 12, 1658–1667. 1578260
[52]  Figueiredo, D.M.; Hallewell, R.A.; Chen, L.L.; Fairweather, N.F.; Dougan, G.; Savitt, J.M.; Parks, D.A.; Fishman, P.S. Delivery of recombinant tetanus-superoxide dismutase proteins to central nervous system neurons by retrograde axonal transport. Exp. Neurol.?1997, 145, 546–554, doi:10.1006/exnr.1997.6490. 9217090
[53]  Matthews, C.C.; Figueiredo, D.M.; Wollack, J.B.; Fairweather, N.F.; Dougan, G.; Hallewell, R.A.; Cadet, J.L.; Fishman, P.S. Protective effect of supplemental superoxide dismutase on survival of neuronal cells during starvation. Requirement for cytosolic distribution. J. Mol. Neurosci.?2000, 14, 155–166, doi:10.1385/JMN:14:3:155. 10984191
[54]  Audet, J.N.; Gowing, G.; Julien, J.P. Wild-type human SOD1 overexpression does not accelerate motor neuron disease in mice expressing murine Sod1(G86R). Neurobiol. Dis.?, 40, 245–250. 20573565
[55]  Jaarsma, D.; Haasdijk, E.D.; Grashorn, J.A.; Hawkins, R.; van Duijn, W.; Verspaget, H.W.; London, J.; Holstege, J.C. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol. Dis.?2000, 7, 623–643, doi:10.1006/nbdi.2000.0299. 11114261
[56]  Sugawara, T.; Lewen, A.; Gasche, Y.; Yu, F.; Chan, P.H. Overexpression of SOD1 protects vulnerable motor neurons after spinal cord injury by attenuating mitochondrial cytochrome c release. FASEB J.?2002, 16, 1997–1999. 12368231
[57]  Sugawara, T.; Noshita, N.; Lewen, A.; Gasche, Y.; Ferrand-Drake, M.; Fujimura, M.; Morita-Fujimura, Y.; Chan, P.H. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J. Neurosci.?2002, 22, 209–217. 11756504
[58]  Francis, J.W.; Bastia, E.; Matthews, C.C.; Parks, D.A.; Schwarzschild, M.A.; Brown, R.H., Jr.; Fishman, P.S. Tetanus toxin fragment C as a vector to enhance delivery of proteins to the CNS. Brain Res.?2004, 1011, 7–13, doi:10.1016/j.brainres.2004.03.007. 15140640
[59]  Benn, S.C.; Ay, I.; Bastia, E.; Chian, R.J.; Celia, S.A.; Pepinsky, R.B.; Fishman, P.S.; Brown, R.H., Jr.; Francis, J.W. Tetanus toxin fragment C fusion facilitates protein delivery to CNS neurons from cerebrospinal fluid in mice. J. Neurochem.?2005, 95, 1118–1131, doi:10.1111/j.1471-4159.2005.03459.x. 16271047
[60]  Crawford, T.O.; Pardo, C.A. The neurobiology of childhood spinal muscular atrophy. Neurobiol. Dis.?1996, 3, 97–110, doi:10.1006/nbdi.1996.0010. 9173917
[61]  Lefebvre, S.; Burglen, L.; Reboullet, S.; Clermont, O.; Burlet, P.; Viollet, L.; Benichou, B.; Cruaud, C.; Millasseau, P.; Zeviani, M.; et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell?1995, 80, 155–165, doi:10.1016/0092-8674(95)90460-3. 7813012
[62]  Monani, U.R. Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron?2005, 48, 885–896, doi:10.1016/j.neuron.2005.12.001. 16364894
[63]  Francis, J.W.; Figueiredo, D.; vanderSpek, J.C.; Ayala, L.M.; Kim, Y.S.; Remington, M.P.; Young, P.J.; Lorson, C.L.; Ikebe, S.; Fishman, P.S.; Brown, R.H., Jr. A survival motor neuron:tetanus toxin fragment C fusion protein for the targeted delivery of SMN protein to neurons. Brain Res.?2004, 995, 84–96, doi:10.1016/j.brainres.2003.09.063. 14644474
[64]  Kaplan, D.R.; Miller, F.D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol.?2000, 10, 381–391, doi:10.1016/S0959-4388(00)00092-1. 10851172
[65]  Bordet, T.; Schmalbruch, H.; Pettmann, B.; Hagege, A.; Castelnau-Ptakhine, L.; Kahn, A.; Haase, G. Adenoviral cardiotrophin-1 gene transfer protects pmn mice from progressive motor neuronopathy. J. Clin. Invest.?1999, 104, 1077–1085, doi:10.1172/JCI6265. 10525046
[66]  Lesbordes, J.C.; Bordet, T.; Haase, G.; Castelnau-Ptakhine, L.; Rouhani, S.; Gilgenkrantz, H.; Kahn, A. In vivo electrotransfer of the cardiotrophin-1 gene into skeletal muscle slows down progression of motor neuron degeneration in pmn mice. Hum. Mol. Genet.?2002, 11, 1615–1625, doi:10.1093/hmg/11.14.1615. 12075006
[67]  Lesbordes, J.C.; Cifuentes-Diaz, C.; Miroglio, A.; Joshi, V.; Bordet, T.; Kahn, A.; Melki, J. Therapeutic benefits of cardiotrophin-1 gene transfer in a mouse model of spinal muscular atrophy. Hum. Mol. Genet.?2003, 12, 1233–1239, doi:10.1093/hmg/ddg143. 12761038
[68]  Bordet, T.; Castelnau-Ptakhine, L.; Fauchereau, F.; Friocourt, G.; Kahn, A.; Haase, G. Neuronal targeting of cardiotrophin-1 by coupling with tetanus toxin C fragment. Mol. Cell. Neurosci.?2001, 17, 842–854, doi:10.1006/mcne.2001.0979. 11358482
[69]  Rind, H.B.; Butowt, R.; von Bartheld, C.S. Synaptic targeting of retrogradely transported trophic factors in motoneurons: Comparison of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and cardiotrophin-1 with tetanus toxin. J. Neurosci.?2005, 25, 539–549, doi:10.1523/JNEUROSCI.4322-04.2005. 15659589
[70]  Jellinger, K.A. Basic mechanisms of neurodegeneration: A critical update. J. Cell. Mol. Med.?2010, 14, 457–487. 20070435
[71]  Vukosavic, S.; Dubois-Dauphin, M.; Romero, N.; Przedborski, S. Bax and Bcl-2 interaction in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem.?1999, 73, 2460–2468. 10582606
[72]  Carlton, E.; Teng, Q.; Federici, T.; Yang, J.; Riley, J.; Boulis, N.M. Fusion of the tetanus toxin C fragment binding domain and Bcl-xL for protection of peripheral nerve neurons. Neurosurgery?2008, 63, 1175–1182, 1182–1184. 19057331
[73]  Bradley, W.G. Overview of motor neuron disease: classification and nomenclature. Clin. Neurosci.?1995, 3, 323–326. 9021252
[74]  Lai, E.C.; Felice, K.J.; Festoff, B.W.; Gawel, M.J.; Gelinas, D.F.; Kratz, R.; Murphy, M.F.; Natter, H.M.; Norris, F.H.; Rudnicki, S.A. Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. The North America ALS/IGF-I Study Group. Neurology?1997, 49, 1621–1630. 9409357
[75]  Miller, R.G.; Bryan, W.W.; Dietz, M.A.; Munsat, T.L.; Petajan, J.H.; Smith, S.A.; Goodpasture, J.C. Toxicity and tolerability of recombinant human ciliary neurotrophic factor in patients with amyotrophic lateral sclerosis. Neurology?1996, 47, 1329–1331, doi:10.1212/WNL.47.5.1329. 8909453
[76]  Kaspar, B.K.; Llado, J.; Sherkat, N.; Rothstein, J.D.; Gage, F.H. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science?2003, 301, 839–842, doi:10.1126/science.1086137. 12907804
[77]  Palazzolo, I.; Stack, C.; Kong, L.; Musaro, A.; Adachi, H.; Katsuno, M.; Sobue, G.; Taylor, J.P.; Sumner, C.J.; Fischbeck, K.H.; Pennuto, M. Overexpression of IGF-1 in muscle attenuates disease in a mouse model of spinal and bulbar muscular atrophy. Neuron?2009, 63, 316–328, doi:10.1016/j.neuron.2009.07.019. 19679072
[78]  Chu, Q.; Moreland, R.; Yew, N.S.; Foley, J.; Ziegler, R.; Scheule, R.K. Systemic Insulin-like growth factor-1 reverses hypoalgesia and improves mobility in a mouse model of diabetic peripheral neuropathy. Mol. Ther.?2008, 16, 1400–1408, doi:10.1038/mt.2008.115. 18545223
[79]  Payne, A.M.; Zheng, Z.; Messi, M.L.; Milligan, C.E.; Gonzalez, E.; Delbono, O. Motor neurone targeting of IGF-1 prevents specific force decline in ageing mouse muscle. J. Physiol.?2006, 570, 283–294. 16293644
[80]  Payne, A.M.; Messi, M.L.; Zheng, Z.; Delbono, O. Motor neuron targeting of IGF-1 attenuates age-related external Ca2+-dependent skeletal muscle contraction in senescent mice. Exp. Gerontol.?2007, 42, 309–319, doi:10.1016/j.exger.2006.11.003. 17174053
[81]  Chian, R.J.; Li, J.; Ay, I.; Celia, S.A.; Kashi, B.B.; Tamrazian, E.; Matthews, J.C.; Bronson, R.T.; Rossomando, A.; Pepinsky, R.B.; Fishman, P.S.; Brown, R.H., Jr.; Francis, J.W. IGF-1:tetanus toxin fragment C fusion protein improves delivery of IGF-1 to spinal cord but fails to prolong survival of ALS mice. Brain Res.?2009, 1287, 1–19, doi:10.1016/j.brainres.2009.06.066. 19563785
[82]  Messi, M.L.; Clark, H.M.; Prevette, D.M.; Oppenheim, R.W.; Delbono, O. The lack of effect of specific overexpression of IGF-1 in the central nervous system or skeletal muscle on pathophysiology in the G93A SOD-1 mouse model of ALS. Exp. Neurol.?2007, 207, 52–63, doi:10.1016/j.expneurol.2007.05.016. 17597610
[83]  Henderson, C.E.; Phillips, H.S.; Pollock, R.A.; Davies, A.M.; Lemeulle, C.; Armanini, M.; Simmons, L.; Moffet, B.; Vandlen, R.A.; Simpson, L.C.; et al. GDNF: A potent survival factor for motoneurons present in peripheral nerve and muscle. Science?1994, 266, 1062–1064. 7973664
[84]  Li, L.; Wu, W.; Lin, L.F.; Lei, M.; Oppenheim, R.W.; Houenou, L.J. Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA?1995, 92, 9771–9775, doi:10.1073/pnas.92.21.9771. 7568215
[85]  Oppenheim, R.W.; Houenou, L.J.; Johnson, J.E.; Lin, L.F.; Li, L.; Lo, A.C.; Newsome, A.L.; Prevette, D.M.; Wang, S. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature?1995, 373, 344–346, doi:10.1038/373344a0. 7830769
[86]  Sagot, Y.; Tan, S.A.; Hammang, J.P.; Aebischer, P.; Kato, A.C. GDNF slows loss of motoneurons but not axonal degeneration or premature death of pmn/pmn mice. J. Neurosci.?1996, 16, 2335–2341. 8601813
[87]  Yan, Q.; Matheson, C.; Lopez, O.T. In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature?1995, 373, 341–344, doi:10.1038/373341a0. 7830768
[88]  Bjorklund, A.; Rosenblad, C.; Winkler, C.; Kirik, D. Studies on neuroprotective and regenerative effects of GDNF in a partial lesion model of Parkinson's disease. Neurobiol. Dis.?1997, 4, 186–200, doi:10.1006/nbdi.1997.0151. 9361295
[89]  Gash, D.M.; Zhang, Z.; Ovadia, A.; Cass, W.A.; Yi, A.; Simmerman, L.; Russell, D.; Martin, D.; Lapchak, P.A.; Collins, F.; Hoffer, B.J.; Gerhardt, G.A. Functional recovery in parkinsonian monkeys treated with GDNF. Nature?1996, 380, 252–255, doi:10.1038/380252a0. 8637574
[90]  Gill, S.S.; Patel, N.K.; Hotton, G.R.; O'Sullivan, K.; McCarter, R.; Bunnage, M.; Brooks, D.J.; Svendsen, C.N.; Heywood, P. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med.?2003, 9, 589–595, doi:10.1038/nm850. 12669033
[91]  Lang, A.E.; Gill, S.; Patel, N.K.; Lozano, A.; Nutt, J.G.; Penn, R.; Brooks, D.J.; Hotton, G.; Moro, E.; Heywood, P.; Brodsky, M.A.; Burchiel, K.; Kelly, P.; Dalvi, A.; Scott, B.; Stacy, M.; Turner, D.; Wooten, V.G.; Elias, W.J.; Laws, E.R.; Dhawan, V.; Stoessl, A.J.; Matcham, J.; Coffey, R.J.; Traub, M. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol.?2006, 59, 459–466, doi:10.1002/ana.20737. 16429411
[92]  Slevin, J.T.; Gerhardt, G.A.; Smith, C.D.; Gash, D.M.; Kryscio, R.; Young, B. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J. Neurosurg.?2005, 102, 216–222, doi:10.3171/jns.2005.102.2.0216. 15739547
[93]  Li, W.; Brakefield, D.; Pan, Y.; Hunter, D.; Myckatyn, T.M.; Parsadanian, A. Muscle-derived but not centrally derived transgene GDNF is neuroprotective in G93A-SOD1 mouse model of ALS. Exp. Neurol.?2007, 203, 457–471, doi:10.1016/j.expneurol.2006.08.028. 17034790
[94]  Suzuki, M.; McHugh, J.; Tork, C.; Shelley, B.; Klein, S.M.; Aebischer, P.; Svendsen, C.N. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One?2007, 2, e689. 17668067
[95]  Larsen, K.E.; Benn, S.C.; Ay, I.; Chian, R.J.; Celia, S.A.; Remington, M.P.; Bejarano, M.; Liu, M.; Ross, J.; Carmillo, P.; Sah, D.; Phillips, K.A.; Sulzer, D.; Pepinsky, R.B.; Fishman, P.S.; Brown, R.H., Jr.; Francis, J.W. A glial cell line-derived neurotrophic factor (GDNF): Tetanus toxin fragment C protein conjugate improves delivery of GDNF to spinal cord motor neurons in mice. Brain Res.?2006, 1120, 1–12, doi:10.1016/j.brainres.2006.08.079. 17020749
[96]  Li, J.; Chian, R.J.; Ay, I.; Kashi, B.B.; Celia, S.A.; Tamrazian, E.; Pepinsky, R.B.; Fishman, P.S.; Brown, R.H., Jr.; Francis, J.W. Insect GDNF:TTC fusion protein improves delivery of GDNF to mouse CNS. Biochem. Biophys. Res. Commun.?2009, 390, 947–951, doi:10.1016/j.bbrc.2009.10.083. 19852934
[97]  Ciriza, J.; Moreno-Igoa, M.; Calvo, A.C.; Yague, G.; Palacio, J.; Miana-Mena, F.J.; Munoz, M.J.; Zaragoza, P.; Brulet, P.; Osta, R. A genetic fusion GDNF-C fragment of tetanus toxin prolongs survival in a symptomatic mouse ALS model. Restor. Neurol. Neurosci.?2008, 26, 459–465. 19096133
[98]  Ciriza, J.; García-Ojeda, M.; Martín-Burriel, I.; Agulhon, C.; Miana-Mena, F.J.; Munoz, M.J.; Zaragoza, P.; Brulet, P.; Osta, R. Antiapoptotic activity maintenance of Brain Derived Neurotrophic factor and the C fragment of the tetanus toxin genetic fusion protein. CEJB?2008, 3, 105–112.
[99]  Roux, S.; Saint Cloment, C.; Curie, T.; Girard, E.; Mena, F.J.; Barbier, J.; Osta, R.; Molgo, J.; Brulet, P. Brain-derived neurotrophic factor facilitates in vivo internalization of tetanus neurotoxin C-terminal fragment fusion proteins in mature mouse motor nerve terminals. Eur. J. Neurosci.?2006, 24, 1546–1554, doi:10.1111/j.1460-9568.2006.05030.x. 17004918
[100]  Datta, S.R.; Brunet, A.; Greenberg, M.E. Cellular survival: A play in three Akts. Genes Dev.?1999, 13, 2905–2927, doi:10.1101/gad.13.22.2905. 10579998
[101]  Kennedy, S.G.; Kandel, E.S.; Cross, T.K.; Hay, N. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol. Cell. Biol.?1999, 19, 5800–5810. 10409766
[102]  Gil, C.; Chaib-Oukadour, I.; Blasi, J.; Aguilera, J. HC fragment (C-terminal portion of the heavy chain) of tetanus toxin activates protein kinase C isoforms and phosphoproteins involved in signal transduction. Biochem. J.?2001, 356, 97–103, doi:10.1042/0264-6021:3560097. 11336640
[103]  Gil, C.; Chaib-Oukadour, I.; Pelliccioni, P.; Aguilera, J. Activation of signal transduction pathways involving trkA, PLCgamma-1, PKC isoforms and ERK-1/2 by tetanus toxin. FEBS Lett.?2000, 481, 177–182, doi:10.1016/S0014-5793(00)02002-0. 10996319
[104]  Chaib-Oukadour, I.; Gil, C.; Aguilera, J. The C-terminal domain of the heavy chain of tetanus toxin rescues cerebellar granule neurones from apoptotic death: involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. J. Neurochem.?2004, 90, 1227–1236, doi:10.1111/j.1471-4159.2004.02586.x. 15312177
[105]  Lalli, G.; Schiavo, G. Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR. J. Cell. Biol.?2002, 156, 233–239, doi:10.1083/jcb.200106142. 11807088
[106]  Chaib-Oukadour, I.; Gil, C.; Rodriguez-Alvarez, J.; Ortega, A.; Aguilera, J. Tetanus toxin H(C) fragment reduces neuronal MPP+ toxicity. Mol. Cell. Neurosci.?2009, 41, 297–303, doi:10.1016/j.mcn.2009.03.006. 19344769
[107]  Mendieta, L.; Venegas, B.; Moreno, N.; Patricio, A.; Martinez, I.; Aguilera, J.; Limon, I.D. The carboxyl-terminal domain of the heavy chain of tetanus toxin prevents dopaminergic degeneration and improves motor behavior in rats with striatal MPP(+)-lesions. Neurosci. Res.?2009, 65, 98–106, doi:10.1016/j.neures.2009.06.001. 19523997
[108]  Luyten, C.R.; van Overveld, F.J.; De Backer, L.A.; Sadowska, A.M.; Rodrigus, I.E.; De Hert, S.G.; De Backer, W.A. Antioxidant defence during cardiopulmonary bypass surgery. Eur. J. Cardiothorac Surg.?2005, 27, 611–616, doi:10.1016/j.ejcts.2004.12.013. 15784359
[109]  Radenovic, L.; Selakovic, V.; Oliván, S.; Calvo, A.C.; Rando, A.; Jana?, B.; Osta, R. C-Terminal Fragment of Tetanus Toxin as a Potential Therapeutic Molecule for Global Cerebral Ischemia. 2010. in preparation.
[110]  Stenmark, H.; Moskaug, J.O.; Madshus, I.H.; Sandvig, K.; Olsnes, S. Peptides fused to the amino-terminal end of diphtheria toxin are translocated to the cytosol. J. Cell. Biol.?1991, 113, 1025–1032, doi:10.1083/jcb.113.5.1025. 2040642
[111]  Fishman, P.S.; Parks, D.A.; Patwardhan, A.J.; Matthews, C.C. Neuronal binding of tetanus toxin compared to its ganglioside binding fragment (H(c)). Nat. Toxins?1999, 7, 151–156, doi:10.1002/(SICI)1522-7189(199907/08)7:4<151::AID-NT51>3.0.CO;2-K. 10797643
[112]  Anderson, R.; Gao, X.M.; Papakonstantinopoulou, A.; Roberts, M.; Dougan, G. Immune response in mice following immunization with DNA encoding fragment C of tetanus toxin. Infect. Immun.?1996, 64, 3168–3173. 8757849
[113]  Fishman, P.S.; Matthews, C.C.; Parks, D.A.; Box, M.; Fairweather, N.F. Immunization does not interfere with uptake and transport by motor neurons of the binding fragment of tetanus toxin. J. Neurosci. Res.?2006, 83, 1540–1543, doi:10.1002/jnr.20847. 16557581
[114]  Fishman, P.S.; Parks, D.A.; Bowen, T.; Matthews, C.C. Localized tetanus in immunized mice. Neurotoxicology?2009, 30, 697–701, doi:10.1016/j.neuro.2009.05.004. 19465055
[115]  Figueiredo, D.; Turcotte, C.; Frankel, G.; Li, Y.; Dolly, O.; Wilkin, G.; Marriott, D.; Fairweather, N.; Dougan, G. Characterization of recombinant tetanus toxin derivatives suitable for vaccine development. Infect. Immun.?1995, 63, 3218–3221. 7622252
[116]  Stockel, K.; Schwab, M.; Thoenen, H. Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res.?1975, 99, 1–16, doi:10.1016/0006-8993(75)90604-6. 52914
[117]  Lai, C.; Xie, C.; Shim, H.; Chandran, J.; Howell, B.W.; Cai, H. Regulation of endosomal motility and degradation by amyotrophic lateral sclerosis 2/alsin. Mol. Brain?2009, 2, 23, doi:10.1186/1756-6606-2-23. 19630956
[118]  Murakami, T.; Nagano, I.; Hayashi, T.; Manabe, Y.; Shoji, M.; Setoguchi, Y.; Abe, K. Impaired retrograde axonal transport of adenovirus-mediated E. coli LacZ gene in the mice carrying mutant SOD1 gene. Neurosci. Lett.?2001, 308, 149–152, doi:10.1016/S0304-3940(01)02036-5. 11479010
[119]  LaMonte, B.H.; Wallace, K.E.; Holloway, B.A.; Shelly, S.S.; Ascano, J.; Tokito, M.; Van Winkle, T.; Howland, D.S.; Holzbaur, E.L. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron?2002, 34, 715–727, doi:10.1016/S0896-6273(02)00696-7. 12062019
[120]  Cui, B.; Wu, C.; Chen, L.; Ramirez, A.; Bearer, E.L.; Li, W.P.; Mobley, W.C.; Chu, S. One at a time, live tracking of NGF axonal transport using quantum dots. Proc. Natl. Acad. Sci. USA?2007, 104, 13666–13671, doi:10.1073/pnas.0706192104. 17698956
[121]  Townsend, S.A.; Evrony, G.D.; Gu, F.X.; Schulz, M.P.; Brown, R.H., Jr.; Langer, R. Tetanus toxin C fragment-conjugated nanoparticles for targeted drug delivery to neurons. Biomaterials?2007, 28, 5176–5184, doi:10.1016/j.biomaterials.2007.08.011. 17854886
[122]  Oliveira, H.; Fernandez, R.; Pires, L.R.; Martins, M.C.; Simoes, S.; Barbosa, M.A.; Pego, A.P. Targeted gene delivery into peripheral sensorial neurons mediated by self-assembled vectors composed of poly(ethylene imine) and tetanus toxin fragment c. J. Control. Release?2010, 143, 350–358, doi:10.1016/j.jconrel.2010.01.018. 20093157


comments powered by Disqus