Effective R&D and strict quality control of a broad range of foods, beverages, and pharmaceutical products require objective taste evaluation. Advanced taste sensors using artificial-lipid membranes have been developed based on concepts of global selectivity and high correlation with human sensory score. These sensors respond similarly to similar basic tastes, which they quantify with high correlations to sensory score. Using these unique properties, these sensors can quantify the basic tastes of saltiness, sourness, bitterness, umami, astringency and richness without multivariate analysis or artificial neural networks. This review describes all aspects of these taste sensors based on artificial lipid, ranging from the response principle and optimal design methods to applications in the food, beverage, and pharmaceutical markets.
References
[1]
Legin, A.; Rudnitskaya, A.; Vlasov, Y.; Di Natale, C.; Davide, F.; D’Amico, A. Tasting of beverages using an electronic tongue. Sens. Actuat. B?1997, 44, 291–296.
[2]
Vlasov, Y.; Legin, A. Non-selective chemical sensors in analytical chemistry: from “electronic nose” to “electronic tongue”. Fresenius J. Anal. Chem?1998, 361, 255–260.
[3]
Legin, A.; Rudnitskaya, A.; Vlasov, Y.; Di Natale, C.; Mazzone, E.; D'Amico, A. Application of electronic tongue for qualitative and quantitative analysis of mineral water and wine. Electroanal?1999, 11, 814–820.
[4]
Di Natale, C.; Paolesse, R.; Macagnano, A.; Mantini, A.; D'Amico, A.; Ubigli, M.; Legin, A.; Lvova, L.; Rudnitskaya, A.; Vlasov, Y. Application of a combined artificial olfaction and taste system to the quantification of relevant compounds in red wine. Sens. Actuat. B?2000, 69, 342–347.
[5]
Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl. Chem?2005, 77, 1965–1983.
[6]
Winquist, F.; Wide, P.; Lundstr?m, I. An electronic tongue based on voltammetry. Anal. Chim. Acta?1997, 357, 21–31.
[7]
Winquist, F.; Holmin, S.; Krantz-Rülcker, C.; Wide, P.; Lundstr?m, I. A hybrid electronic tongue. Anal. Chim. Acta?2000, 406, 147–157.
[8]
Toko, K.; Yamafuji, K. Influence of monovalent and divalent cations on the surface area of phosphatidylglycerol monolayers. Chem. Phys. Lipids?1980, 26, 79–99.
[9]
Toko, K.; Nitta, J.; Yamafuji, K. Dynamic aspect of a phase transition in DOPH-millipore membranes. J. Phys. Soc. Jpn?1981, 50, 1343–1350.
[10]
Toko, K.; Yamafuji, K. Stabilization effect of protons and divalent cations on membrane structures of lipids. Biophys. Chem?1981, 14, 11–23.
[11]
Toko, K.; Ryu, K.; Ezaki, S.; Yamafuji, K. Self-sustained oscillations of membrane potential in DOPH-millipore membranes. J. Phys. Soc. Jpn?1982, 51, 3398–3405.
[12]
Toko, K.; Tsukiji, M.; Ezaki, S.; Yamafuji, K. Current-voltage characteristics and self-sustained oscillations in dioleyl phosphate-millipore membranes. Biophys. Chem?1984, 20, 39–59.
[13]
Toko, K.; Nosaka, M.; Tsukiji, M.; Yamafuji, K. Dynamic property of membrane formation in a protoplasmic droplet of nitella. Biophys. Chem?1985, 21, 295–313.
[14]
Toko, K.; Yoshikawa, K.; Tsukiji, M.; Nosaka, M.; Yamafuji, K. On the oscillatory phenomenon in an oil/water interface. Biophys. Chem?1985, 22, 151–158.
[15]
Toko, K.; Tsukiji, M.; Iiyama, S.; Yamafuji, K. Self-sustained oscillations of electric potential in a model membrane. Biophys. Chem?1986, 23, 201–210.
[16]
Toko, K.; Nakashima, N.; Iiyama, S.; Yamafuji, K. Self-oscillation of electric potential of a porous membrane impregnated with polymer multi-bilayer complexes. Chem. Lett?1986, 15, 1375–1378.
[17]
Iiyama, S.; Toko, K.; Yamafuji, K. Effect of bitter substances on a model membrane system of taste reception. Agric. Biol. Chem?1986, 50, 2709–2714.
[18]
Iiyama, S.; Toko, K.; Yamafuji, K. Electric oscillation in an excitable model membrane impregnated with lipid analogues. Biophys. Chem?1987, 28, 129–135.
[19]
Hayashi, K.; Yamafuji, K.; Toko, K.; Ozaki, N.; Yoshida, T. Effect of taste substances on electric characteristics of a lipid cast membrane with a single pore. Sens. Actuat?1989, 16, 25–42.
[20]
Toko, K.; Hayashi, K.; Fujiyoshi, T.; Yamafuji, K. Self-organized electric structure in uni- and multicellular biological systems. Synergetics?1989, 43, 326–327.
[21]
Iiyama, S.; Toko, K.; Hayashi, K.; Yamafuji, K. Effect of several sweet substances on the electric characteristics of a dioleyl phosphate-millipore membrane. Agric. Biol. Chem?1989, 53, 675–681.
[22]
Hayashi, K.; Toko, K.; Yamafuji, K. Effect of taste substances on aperiodic oscillation of an electric potential in a synthetic lipid membrane. Jpn. J. Appl. Phys?1989, 28, 1507–1512.
[23]
Hayashi, K.; Yamanaka, T.; Toko, K.; Yamafuji, K. Multichannel taste sensor using lipid membranes. Sens. Actuat. B?1990, 2, 205–213.
[24]
Toko, K.; Yamanaka, T.; Hayashi, K.; Yamafuji, K. Multi-channel taste sensor with lipid membranes. Technical Digest of the 9th Sensor Symposium, Tokyo, Japan; 1990; pp. 193–196.
[25]
Ikezaki, H.; Hayashi, K.; Yamanaka, M.; Tatsukawa, R.; Toko, K.; Yamafuji, K. Multichannel taste sensor with artificial lipid membrane. Trans. JEICE Jpn?1991, J74-C-II, 434–442. (in Japanese).
[26]
Ikezaki, H.; Toko, K.; Hayashi, K.; Toukubo, R.; Yamanaka, T.; Sato, K.; Yamafuji, K. Intelligent multi-channel taste sensor with lipid membranes. Proceedings of Technical Digest of the 10th Sensor Symposium, Tokyo, Japan, May 1991; pp. 173–176.
[27]
Ikezaki, H.; Toko, K.; Hayashi, K.; Toukubo, R.; Sato, K.; Yamafuji, K. Taste sensing system with lipid membranes. Proceedings of Technical Digest of the 11th Sensor Symposium, Tokyo, Japan, June 4–5, 1992; pp. 221–224.
[28]
Murata, T.; Hayashi, K.; Toko, K.; Ikezaki, H.; Sato, K.; Toukubo, R.; Yamafuji, K. Quantification of sourness and saltiness using a multichannel sensor with lipid membranes. Sens. Mater?1992, 4, 81–88.
[29]
Toko, K.; Matsuno, T.; Yamafuji, K.; Hayashi, K.; Ikezaki, H.; Sato, K.; Toukubo, R.; Kawarai, S. Multichannel taste sensor using electrical potential changes in lipid membranes. Biosens. Bioelectron?1994, 9, 359–364.
[30]
Hayashi, K.; Toko, K.; Yamanaka, M.; Yoshihara, H.; Yamafuji, K.; Ikezaki, H.; Toukubo, R.; Sato, K. Electric characteristics of lipid-modified monolayer membranes for taste sensor. Sens. Actuat. B?1995, 23, 55–61.
[31]
Toko, K. Biomimetic Sensor Technology; Cambridge University Press: Cambridge, UK, 2000; pp. 113–180.
[32]
Bartoshuk, L.M. Taste mixtures: is mixture suppression related to compression? Physiol. Behav?1975, 14, 643–649.
[33]
Ninomiya, Y.; Funakoshi, M. Qualitative discrimination among umami and the four basic taste substances in mice. In Umami: A Basic Taste; Kawamura, Y., Kare, M.R., Eds.; Marcel Dekker: New York, NY, USA, 1987; pp. 365–385.
[34]
Kawamura, Y.; Funakoshi, M.; Kasahara, Y.; Yamamoto, T. A neurophysiological study on astringent taste. Jpn. J. Physiol?1969, 19, 851–865.
[35]
Schiffman, S.S.; Suggs, M.S.; Sostman, A.L.; Simon, S.A. Chorda tympani and lingual nerve responses to astringent compounds in rodents. Physiol. Behav?1992, 51, 55–63.
Singer, S.J.; Nicolson, G.L. The fluid mosaic model of the structure of cell membranes. Science?1972, 175, 720–731.
[38]
Chandrashekar, J.; Hoon, M.A.; Ryba, N.J.; Zuker, C.S. The receptors and cells for mammalian taste. Nature?2006, 444, 288–294.
[39]
Reed, D.; Nanthakumar, E.; North, M.; Bell, C.; Bartoshuk, L.; Price, R. Localization of a gene for bitter-taste perception to human chromosome 5p15. Am. J. Hum.Genet?1999, 64, 1478–1480.
Ishimaru, Y.; Inada, H.; Kubota, M.; Zhuang, H.; Tominaga, M.; Matsunami, H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl. Acad. Sci. USA?2006, 103, 12569–12574.
[42]
Ishii, S.; Misaka, T.; Kishi, M.; Kaga, T.; Ishimaru, Y.; Abe, K. Acetic acid activates PKD1L3–PKD2L1 channel—A candidate sour taste receptor. Biochem. Biophys. Res. Commun?2009, 385, 346–350.
[43]
Kellenberger, S.; Schild, L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev?2002, 82, 735–767.
[44]
Lyall, V.; Heck, G.L.; Vinnikova, A.K.; Ghosh, S.; Phan, T.H.; Alam, R.I.; Russell, O.F.; Malik, S.A.; Bigbee, J.W.; DeSimone, J.A. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J. Physiol?2004, 558, 147–159.
[45]
Nakashima, K.; Ninomiya, Y. Increase in inositol 1,4,5-trisphosphate levels of the fungiform papilla in response to saccharin and bitter substances in mice. Cell Physiol. Biochem?1998, 8, 224–230.
[46]
Nakashima, K.; Ninomiya, Y. Transduction for sweet taste of saccharin may involve both inositol 1,4,5-trisphosphate and cAMP pathways in the fungiform taste buds in C57BL mice. Cell Physiol. Biochem?1999, 9, 90–98.
[47]
DeSimone, J.A.; Lyalla, V.; Hecka, G.L.; Feldman, G.M. Acid detection by taste receptor cells. Resp. Physiol?2001, 129, 231–245.
[48]
Yan, W.; Sunavala, G.; Rosenzweig, S.; Dasso, M.; Brand, J.G.; Spielman, A.I. Bitter taste transduced by PLC-β2-dependent rise in IP3 and α-gustducin-dependent fall in cyclic nucleotides. Am. J. Physiol. Cell Physiol?2001, 280, C742–C751.
[49]
Zhang, Y.; Hoon, M.A.; Chandrashekar, J.; Mueller, K.L.; Cook, B.; Wu, D.; Zuker, C.S.; Ryba, N.J. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell?2003, 112, 293–301.
[50]
Kamo, N.; Miyake, M.; Kurihara, K.; Kobatake, Y. Physicochemical studies of taste reception. I. Model membrane simulating taste receptor potential in response to stimuli of salts, acids and distilled water. Biochim. Biophys. Acta?1974, 367, 1–10.
[51]
Kamo, N.; Miyake, M.; Kurihara, K.; Kobatake, Y. Physicochemical studies of taste reception. II. Possible mechanism of generation of taste receptor potential induced by salt stimuli. Biochim. Biophys. Acta?1974, 367, 11–23.
[52]
Ikezaki, H.; Taniguchi, A.; Toko, K. Quantification of taste of green tea with taste sensor. Trans. IEE of Japan?1997, 117-E, 465–470. (in Japanese).
[53]
Ikezaki, H.; Kobayashi, Y.; Toukubo, R.; Naito, Y.; Taniguchi, A.; Toko, K. Techniques to control sensitivity and selectivity of multichannel taste sensor using lipid membranes. Proceedings of the 10th International Conference on Solid-State Sensors and Actuators, Sendai, Japan, June 7–10, 1999; pp. 1634–1637.
[54]
Ikezaki, H.; Naito, Y.; Kobayashi, Y.; Toukubo, R.; Taniguchi, A.; Toko, K. Improvement of selectivity of taste sensor by control of charge density and hydrophobicity of lipid membrane. Technical Report of IEICE. OME?2000, 100, 19–24. (in Japanese).
[55]
Kobayashi, Y.; Hamada, H.; Yamaguchi, Y.; Ikezaki, H.; Toko, K. Development of an artificial lipid-based membrane sensor with high selectivity and sensitivity to the bitterness of drugs and with high correlation with sensory score. IEEJ Trans?2009, 4, 710–719.
[56]
Gouy, M. Sur la constitution de la charge électrique à la surface d'un électrolyte. J. Phys. Theor. Appl?1910, 9, 457–468. (in French).
[57]
Chapman, D.L. A contribution to the theory of electrocapillarity. Phil. Mag?1913, 25, 475–481.
Ty?uble, H.; Teubner, M.; Woolley, P.; Eibl, H. Electrostatic interactions at charged lipid membranes. I. Effects of pH and univalent cations on membrane structure. Biophys. Chem?1976, 4, 319–342.
[60]
Oohira, K.; Toko, K.; Akiyama, H.; Yoshihara, H.; Yamafuji, K. Electric characteristics of hybrid polymer membranes composed of two lipid species. J. Phys. Soc. Jpn?1995, 64, 3554–3561.
[61]
Oohira, K.; Toko, K. Theory of electric characteristics of the lipid/PVC/DOPP membrane and PVC/DOPP membrane in response to taste stimuli. Biophys. Chem?1996, 61, 29–35.
[62]
Hayashi, K.; Shimoda, H.; Matsufuji, S.; Toko, K. Adsorption of taste substances on lipid membranes of taste sensor. Trans. IEE of Japan?1999, 119, 374–382. (in Japanese).
[63]
Iiyama, S.; Kuga, H.; Ezaki, S.; Hayashi, K.; Toko, K. Peculiar change in membrane potential of taste sensor caused by umami substances. Sens. Actuat. B?2003, 91, 191–194.
[64]
Kumazawa, T.; Kashiwayanagi, M.; Kurihara, K. Neuroblastoma cell as a model for a taste cell: mechanism of depolarization in response to various bitter substances. Brain Res?1985, 333, 27–33.
Donovan, S.F.; Pescatore, M.C. Method for measuring the logarithm of the octanol-water partition coefficient by using short octadecyl-poly (vinyl alcohol) high-performance liquid chromatography columns. J. Chromatogr. A?2002, 952, 47–61.
[67]
Gulyaeva, N.; Zaslavsky, A.; Lechner, P.; Chait., A.; Zaslavsky, B. pH dependence of the relative hydrophobicity and lipophilicity of amino acids and peptides measured by aqueous two-phase and octanol-buffer partitioning. J. Pept. Res?2003, 61, 71–79.
[68]
Gastl, M.; Hanke, S.; Back, W. Analytical investigations to evaluate bitter sensation using a taste sensing system. Brew. Sci?2007, 60, 48–54.
[69]
Gastl, M.; Hanke, S.; Back, W. “Drinkability”—balance and harmony of components as well as an incentive for continuing to drink. In Brauwelt International; Fachverlag Hans Carl: Nürnberg, Germany, 2008; Volume 26, pp. 148–153.
[70]
Okamoto, M.; Sunada, H.; Nakano, M.; Nishiyama, R. Bitterness evaluation of orally disintegrating famotidine tablets using a taste sensor. Asian J. Pharm. Sci?2009, 4, 1–7.
[71]
Habara, M.; Chui, H.; Ikezaki, H.; Toko, K. Detecting sweetness with lipid/polymer membranes. Proceedings of International Symposium on Olfaction and Electronic Noses (ISOEN 2007), St. Petersburg, Russia, May 2007; pp. 101–102.
[72]
Habara, M.; Beppu, D.; Cui, H.; Ikezaki, H.; Toko, K. Detecting of sugars using lipid/polymer membranes. Sens. Mater?2007, 19, 325–331.
[73]
Cui, H.; Habara, M.; Ikezaki, H.; Toko, K. Study of surface-modified lipid/polymer membranes for detecting sweet taste substances. Proceedings of the 3rd International Conference on Sensing Technology, Tainan, Taiwan, November 30–December 3, 2008; pp. 610–614.
[74]
Stone, H. Gustatory responses to the L-amino acids in man. In Olfaction and Taste II; Hayashi, T., Ed.; Pergamon Press: London, UK, 1967; pp. 289–306.
[75]
Miura, S.; Sato, S.; Yoshida, M.; Kaneko, T.; Namba, S.; Kainosho, M. Taste and other sensations in mouth. In Sensory Evaluation Handbook; Ichikawa, K., Indow, T., Sato, S., Nonaka, T., Noro, K., Haga, T., Yoshikawa, S., Yoshida, M., Eds.; JUSE Press: Tokyo, Japan, 1973; pp. 156–175. (in Japanese).
[76]
Pfaffmann, C. The sense of taste. In Handbook of Physiology, Neurophysiology; Field, J., Ed.; Williams & Wilkins: Baltimore, MD, USA, 1959; Volume 1, pp. 507–533.
[77]
Beider, L.M. Part 2; Taste. In Handbook of Sensory Physiology IV: Chemical Senses; Beilder, L.M., Ed.; Springer-Verlag: Berlin, Germany, 1971; Volume 4, pp. 200–220.
[78]
Schutz, H.G.; Pilgrim, F.J. Differential sensitivity in gustation. J. exp. Psychol?1957, 54, 41–48.
[79]
Baldacci, S.; Matsuno, T.; Toko, K.; Stella, R.; Rossi, D.D. Discrimination of wine using taste and smell sensors. Sens. Mater?1998, 10, 185–200.
[80]
Chen, R.; Ikezaki, H.; Hayashi, N.; Kohata, K.; Kugimiya, Y.; Kobayashi, K.; Taniguchi, A.; Toko, K. Study on evaluating jimi-taste of green tea using multichannel taste sensor. Proceedings of the International Conference O-CHA(tea) Culture and Science, Shizuoka, Japan, November 4–6, 2004; pp. 736–740.
[81]
Hayashi, N.; Chen, R.; Ikezaki, H.; Yamaguchi, S.; Maruyama, D.; Yamaguchi, Y.; Ujihara, T.; Kohata, K. Techniques for universal evaluation of astringency of green tea infusion by the use of a taste sensor system. Biosci. Biotechnol. Biochem?2006, 70, 626–631.
[82]
Hayashi, N.; Chen, R.; Ikezaki, H.; Ujihara, T. Evaluation of the umami taste intensity of green tea by a taste sensor. J. Agric. Food Chem?2008, 56, 7384–7387.
[83]
Arikawa, Y.; Toko, K.; Ikezaki, H.; Shinha, Y.; Ito, T.; Oguri, I.; Baba, S. Analysis of sake taste using multielectrode taste sensor. Sens. Mater?1995, 7, 261–270.
[84]
Arikawa, Y.; Toko, K.; Ikezaki, H.; Shinha, Y.; Ito, T.; Oguri, I.; Baba, S. Analysis of sake mash using multichannel taste sensor. J. Ferment. Bioeng?1996, 82, 371–376.
[85]
Komai, H.; Naito, Y.; Sato, K.; Ikezaki, H.; Taniguchi, A.; Toko, K. Measurement of coffee taste using lipid membrane taste sensors. Proceedings of the ASIC 16th International Scientific Colloquium on Coffee, Kyoto, Japan, April 9–14, 1995; pp. 300–308.
[86]
Fukunaga, T.; Toko, K.; Mori, S.; Nakabayashi, Y.; Kanda, M. Quantification of taste of coffee using sensor with global selectivity. Sens. Mater?1996, 8, 47–56.
[87]
Imamura, T.; Toko, K.; Yanagisawa, S.; Kume, T. Monitoring of fermentation process of miso (soybean paste) using multichannel taste sensor. Sens. Actuat. B?1996, 37, 179–185.
[88]
Yamada, H.; Mizota, Y.; Toko, K.; Doi, T. Highly sensitive discrimination of taste of milk with homogenization treatment using taste sensor. Mater. Sci. Eng?1997, C5, 41–45.
[89]
Mizota, Y.; Matsui, H.; Ikeda, M.; Ichihashi, N.; Iwatsuki, K.; Toko, K. Flavor evaluation using taste sensor for UHT processed milk stored in cartons having different light permeabilities. Milchwissenschaft?2009, 64, 143–146.
[90]
Iiyama, S.; Yahiro, M.; Toko, K. Measurements of soy sauce using taste sensor. Sens. Actuat. B?2000, 66, 205–206.
[91]
Thi, U.T.; Suzuki, K.; Okadome, H.; Homma, S.; Ohtsubo, K. Analysis of the tastes of brown rice and milled rice with different milling yields using a taste sensing system. Food Chem?2004, 88, 557–566.
[92]
Sasaki, K.; Tani, F.; Sato, K.; Ikezaki, H.; Taniguchi, A.; Emori, T.; Iwaki, F.; Chikuni, K.; Mitsumoto, M. Analysis of pork extracts by taste sensing system and the relationship between umami substances and sensor output. Sens. Mater?2005, 17, 349–356.
[93]
Chen, R.; Kobayashi, Y.; Ikezaki, H.; Taniguchi, A.; Toko, K. Study of agricultural products using multichannel taste sensor with lipid/polymer membranes. Proceedings of the International Conference on Electrical Engineering, Sapporo, Japan, July 2004; pp. 1262–1265.
[94]
Ueda, Y.; Yonemitsu, M.; Tsubuku, T.; Sakaguchi, M.; Miyajima, R. Flavor characteristics of glutathione in raw and cooked foodstuffs. Biosci. Biotech. Biochem?1997, 61, 1977–1980.
[95]
Ikezaki, H. Taste Modification Technology of Food and Medicine; Toko, K., Uchida, T., Eds.; CMC publishing: Tokyo, Japan, 2007; pp. 131–141. (in Japanese).
[96]
Ikezaki, H. Monthly Food Plant Manager; Japan Food Journal: Tokyo, Japan, 2009; pp. 78–81. (in Japanese).
[97]
Japan Oil Chemist’s Society. The Handbook of Oil Chemistry-Lipids and Surfactants, 4th ed ed.; Maruzen, Tokyo, Japan, 2001; pp. 602–626. (in Japanese).
[98]
Uchida, T.; Miyanaga, Y.; Tanaka, H.; Wada, K.; Kurosaki, S.; Ohki, T.; Yoshida, M.; Matsuyama, K. Quantitative evaluation of the bitterness of commercial medicines using a taste sensor. Chem. Pharm. Bull?2000, 48, 1843–1845.
[99]
Uchida, T.; Kobayashi, Y.; Miyanaga, Y.; Toukubo, R.; Ikezaki, H.; Taniguchi, A.; Matsuyama, K. A new method for evaluating the bitterness of medicines by semi-continuous measurement of adsorption using a taste sensor. Chem. Pharm. Bull?2001, 49, 1336–1339.
[100]
Miyanaga, Y.; Tanigake, A.; Nakamura, T.; Kobayashi, Y.; Ikezaki, H.; Taniguchi, A.; Matsuyama, K.; Uchida, T. Prediction of the bitterness of single, binary- and multiple-component amino acid solutions using a taste sensor. Int. J. Pharm?2002, 248, 207–218.
[101]
Tanigake, A.; Miyanaga, Y.; Nakamura, T.; Tsuji, E.; Matsuyama, K.; Kunitomo, M.; Uchida, T. The bitterness intensity of clarithromycin evaluated by a taste sensor. Chem. Pharm. Bull?2003, 51, 1241–1245.
[102]
Uchida, T.; Tanigake, A.; Miyanaga, Y.; Matsuyama, K.; Kunitomo, M.; Kobayashi, Y.; Ikezaki, H.; Taniguchi, A. Evaluation of the bitterness of antibiotics using a taste sensor. J. Pharm. Pharmacol?2003, 55, 1479–1485.
[103]
Mukai, J.; Miyanaga, Y.; Ishizaka, T.; Asaka, K.; Nakai, Y.; Tsuji, E.; Uchida, T. Quantitative taste evaluation of total enteral nutrients. Chem. Pharm. Bull?2004, 52, 1416–1421.
[104]
Ishizaka, T.; Miyanaga, Y.; Mukai, J.; Asaka, K.; Nakai, Y.; Tsuji, E.; Uchida, T. Bitterness evaluation of medicines for pediatric use by a taste sensor. Chem. Pharm. Bull?2004, 52, 943–948.
[105]
Kataoka, M.; Miyanaga, Y.; Tsuji, E.; Uchida, T. Evaluation of bottled nutritive drinks using a taste sensor. Int. J. Pharm?2004, 279, 107–114.
[106]
Tachiki, H.; Uchiyama, H.; Okuda, Y.; Uchida, R.; Kobayashi, Y.; Uchida, T. Bitterness evaluation of famotidine orally disintegrating tablets using a taste sensor. Jpn. J. Med. Pharm. Sci?2005, 54, 321–327. (in Japanese).
[107]
Kataoka, M.; Tokuyama, E.; Miyanaga, Y.; Uchida, T. The taste sensory evaluation of medicinal plants and Chinese medicines. Int. J. Pharm?2008, 351, 36–44.
[108]
Takagi, S.; Toko, K.; Wada, K.; Yamada, H.; Toyoshima, K. Detection of suppression of bitterness by sweet substance using a multichannel taste sensor. J. Pharma. Sci?2000, 87, 552–555.
[109]
Takagi, S.; Toko, K.; Wada, K.; Ohki, T. Quantification of suppression of bitterness by phospholipids using taste sensor. J. Pharm. Sci?2001, 90, 2042–2048.
[110]
Nakamura, T.; Tanigake, A.; Miyanaga, Y.; Ogawa, T.; Akiyoshi, T.; Matsuyama, K.; Uchida, T. The effect of various substances on the suppression of the bitterness of quinine–human gustatory sensation, binding, and taste sensor studies. Chem. Pharm. Bull?2002, 50, 1589–1593.
[111]
Miyanaga, Y.; Kobayashi, Y.; Ikezaki, H.; Taniguchi, A.; Uchida, T. Bitterness prediction or bitterness suppression in human medicines using a taste sensor. Sens. Mater?2002, 14, 455–465.
[112]
Miyanaga, Y.; Inoue, N.; Ohnishi, A.; Fujisawa, E.; Yamaguchi, M.; Uchida, T. Quantitative prediction of the bitterness suppression of elemental diets by various flavors using a taste sensor. Pharm. Res?2003, 20, 1932–1938.
[113]
Ogawa, T.; Nakamura, T.; Tsuji, E.; Miyanaga, Y.; Nakagawa, H.; Hirabayashi, H.; Uchida, T. The combination effect of L-arginine and NaCl on bitterness suppression of amino acid solutions. Chem. Pharm. Bull?2004, 52, 172–177.
[114]
Miyanaga, Y.; Mukai, J.; Mukai, T.; Odomi, M.; Uchida, T. Suppression of the bitterness of enteral nutrients using increased particle sizes of branched-chain amino acids (BCAAs) and various flavours: a taste sensor study. Chem. Pharm. Bull?2004, 52, 490–493.
[115]
Tsuji, E.; Uchida, T.; Fukui, A.; Fujii, R.; Sunada, H. Evaluation of bitterness suppression of macrolide dry syrups by jellies. Chem. Pharm. Bull?2006, 54, 310–314.
[116]
Tokuyama, E.; Shibasaki, T.; Kawabe, H.; Mukai, J.; Okada, S.; Uchida, T. Bitterness suppression of BCAA solutions by L-ornithine. Chem. Pharm. Bull?2006, 54, 1288–1292.
[117]
Hashimoto, Y.; Matsunaga, C.; Tokuyama, E.; Tsuji, E.; Uchida, T.; Okada, H. The quantitative prediction of bitterness-suppressing effect of sweeteners on the bitterness of famotidine by sweetness-responsive sensor. Chem. Pharm. Bull?2007, 55, 739–746.
[118]
Ishizaka, T.; Okada, S.; Takemoto, E.; Tokuyama, E.; Tsuji, E.; Mukai, J.; Uchida, T. The suppression of enhanced bitterness intensity of macrolide dry syrup mixed with an acidic powder. Chem. Pharm. Bull?2007, 55, 1452–1457.
[119]
Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. Performance qualification of an electronic tongue based on ICH guideline Q2. J. Pharm. Biomat. Anal.?2010, 51, 497–506.
[120]
ICH Expert Working Group. Validation of analytical procedures: text and methodology Q2(R1). Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland, April 25–27, 2005; Available online: http://www.ich.org/LOB/media/MEDIA417.pdf (accessed on 15 January 2010).
[121]
Uekama, K. Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull?2004, 52, 900–915.
[122]
Katsuragi, Y.; Sugiura, Y.; Cao, L.; Otsuji, K.; Kurihara, K. Selective inhibition of bitter taste of various drugs by lipoprotein. Pharmaceut. Res?1995, 12, 658–662.
[123]
Etoh, S.; Iwakura, M.; Nakashi, K.; Hattori, R.; Hayashi, R.; Toko, K. Fabrication of taste sensor chip and portable taste sensor system. Proceedings of the International Conference on Microtechnologies in Medicine and Biology, Okinawa, Japan, May 9–12, 2006; pp. 180–183.