All Title Author
Keywords Abstract

Sensors  2010 

ZnO-Based Amperometric Enzyme Biosensors

DOI: 10.3390/s100201216

Keywords: ZnO, electrochemical, enzyme biosensors

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol), respectively. Moreover, recent developments in enzyme electrochemical biosensors based on ZnO nanomaterials are reviewed with an emphasis on the fabrications and features of ZnO, approaches for biosensor construction (e.g., modified electrodes and enzyme immobilization) and biosensor performances.

References

[1]  Dzyadevych, S.V.; Arkhypova, V.N.; Soldatkin, A.P.; El'skaya, A.V.; Martelet, C.; Jaffrezic-Renault, N. Amperometric enzyme biosensors: Past, present and future. IRBM?2008, 29, 171–180, doi:10.1016/j.rbmret.2007.11.007.
[2]  Wang, J. Electroanalysis and biosensors. Anal. Chem?1995, 67, 487–492, doi:10.1021/ac00108a033.
[3]  Burmeister, J.J.; Gerhardt, G.A. Self referencing ceramic based multisite microelectrodes for the detection and elimination of interferences from the measurement of L-glutamate and other analytes. Anal. Chem?2001, 73, 1037–1042, doi:10.1021/ac0010429. 11289414
[4]  Norton, D.P.; Heo, Y.W.; Ivill, M.P.; Pearton, S.J.; Chisholm, M.F.; Steiner, T. ZnO: growth, doping & processing. Mater. Today?2004, 7, 34–40.
[5]  Sun, X.W.; Kwok, H.S. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J. Appl. Phys?1999, 86, 408–411, doi:10.1063/1.370744.
[6]  Tian, Z.R.R.; Voigt, J.A.; Liu, J.; Mckenzie, B.; Mcdermott, M.J. Biommetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc?2002, 124, 12954–12955, doi:10.1021/ja0279545. 12405815
[7]  Sberveglieri, G.; Groppelli, S.; Nelli, P.; Tintinelli, A.; Giunta, G. A novel method for the proparation of NH3 sensors based on ZnO-In thin films. Sens. Actuat?1995, 24–25, 588–590.
[8]  Rodriguez, J.A.; Jirsak, T.; Dvorak, J.; Sambasivan, S.; Fischer, D. Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and density functional studies on the formation of NO3. J. Phys. Chem?2000, 104, 319–328, doi:10.1021/jp993224g.
[9]  Lei, C.X.; Hu, S.Q.; Gao, N.; Shen, G.L.; Yu, R.Q. An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode. Bioelectrochemistry?2004, 65, 33–39, doi:10.1016/j.bioelechem.2004.06.002. 15522690
[10]  Battaglini, F.; Bartlett, P.N.; Wang, J.H. Covalent attachment of osmium complexes to glucose oxidase and the application of the resulting modified enzyme in an enzyme switch responsive to glucose. Anal. Chem?2000, 72, 502–509, doi:10.1021/ac990321x. 10695135
[11]  Eggins, B.R. Biosensors: an introduction; John Wiley & Sons Limited: New York, NY, USA, 1996.
[12]  Singh, M.; Verma, N.; Garg, A.K.; Redhu, N. Urea biosensors. Sens. Actuat?2008, 134, 345–351, doi:10.1016/j.snb.2008.04.025.
[13]  Wang, J.X.; Sun, X.W.; Wei, A.; Lei, Y.; Cai, X.P.; Li, C.M.; Dong, Z.L. Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett?2006, 88, 233106, doi:10.1063/1.2210078.
[14]  Weber, J.; Jeedigunta, S.; Kumar, A. Fabrication and characterization of ZnO nanowire arrays with an investigation into electrochemical sensing capabilities. J. Nanomat?2008, 2008, 638523.
[15]  Zang, J.F.; Li, C.M.; Cui, X.Q.; Wang, J.X.; Sun, X.W.; Dong, H.; Sun, C.Q. Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis?2007, 19, 1008–1014, doi:10.1002/elan.200603808.
[16]  Umar, A.; Rahman, M.M.; Kim, S.H.; Hahn, Y.B. ZnO nanonails: Synthesis and their application as glucose biosensor. J. Nanosci. Nanotechnol?2008, 8, 3216–3221, doi:10.1166/jnn.2008.116. 18681071
[17]  Wei, A.; Sun, X.W.; Wang, J.X.; Lei, Y.; Cai, X.P.; Li, C.M.; Dong, Z.L.; Huang, W. Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl. Phys. Lett?2006, 89, 123902, doi:10.1063/1.2356307.
[18]  Dai, Z.H.; Shao, G.J.; Hong, J.M.; Bao, J.C.; Shen, J. Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor. Biosens. Bioelectron?2009, 24, 1286–1291, doi:10.1016/j.bios.2008.07.047. 18774704
[19]  Zhao, Z.W.; Chen, X.J.; Tay, B.K.; Chen, J.S.; Han, Z.J.; Khor, K.A. A novel amperometric biosensor based on ZnO: Co nanoclusters for biosensing glucose. Biosens. Bioelectron?2007, 23, 135–139, doi:10.1016/j.bios.2007.03.014. 17478087
[20]  Liu, J.P.; Guo, C.X.; Li, C.M.; Li, Y.Y.; Chi, Q.B.; Huang, X.T.; Liao, L.; Yu, T. Carbon-decorated ZnO nanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem. Commun?2009, 11, 202–205, doi:10.1016/j.elecom.2008.11.009.
[21]  Zhao, Z.W.; Tay, B.K.; Chen, J.S.; Hu, J.F.; Lim, B.C.; Li, G.P. Large magnetic moment observed in Co-doped ZnO nanocluster-assembled thin films at room temperature. Appl. Phys. Lett?2007, 90, 152502, doi:10.1063/1.2721140.
[22]  Zhao, Z.W.; Tay, B.K.; Chen, J.S.; Hu, J.F.; Sun, X.W.; Tan, S.T. Optical properties of nanocluster-assembled ZnO thin films by nanocluster-beam deposition. Appl. Phys. Lett?2005, 87, 251912, doi:10.1063/1.2149170.
[23]  Zhang, Y.W.; Zhang, Y.; Wang, H.; Yan, B.; Shen, G.L.; Yu, R.Q. An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles. J. Electroanal. Chem?2009, 627, 9–14, doi:10.1016/j.jelechem.2008.12.010.
[24]  Matsubara, C.; Kawamoto, N.; Takamura, K. Oxo [5,10,15,20-tetra (4-pyridyl) porphyrinato] titanium (IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst?1992, 117, 1781–1784, doi:10.1039/an9921701781.
[25]  Hurdis, E.C.; Romeyn, H.J. Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Anal. Chem?1954, 26, 320–325, doi:10.1021/ac60086a016.
[26]  Nakashima, K.; Maki, K.; Kawaguchi, S.; Akiyama, S.; Tsukamoto, Y.; Kazuhiro, I. Anal. Sci?1991, 7, 709–713.
[27]  Cao, X.; Ning, W.; Li, L.D.; Guo, L. Synthesis and characterization of waxberry-like microstructures ZnO for biosensors. Sens. Actuat?2008, 129, 268–273, doi:10.1016/j.snb.2007.08.003.
[28]  Zhu, X.L.; Yuri, I.; Gan, X.; Suzuki, I.; Li, G.X. Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosens. Bioelectron?2007, 22, 1600–1604, doi:10.1016/j.bios.2006.07.007. 16905304
[29]  Yang, Y.H.; Yang, M.H.; Jlang, J.H.; Shen, G.L.; Yu, R.Q. A novel biomolecular immobilization matrix based on nanoporous ZnO/Chitosan composite film for amperometric hydrogen peroxide biosensor. Chin. Chem. Lett?2005, 16, 951–954.
[30]  Lu, X.B.; Zhang, H.J.; Ni, Y.W.; Zhang, Q.; Chen, J.P. Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors. Biosens. Bioelectron?2008, 24, 93–98, doi:10.1016/j.bios.2008.03.025. 18457944
[31]  Xiang, C.; Zou, Y.; Sun, L.X.; Xu, F. Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO-gold nanoparticle-Nafion nanocomposite. Sens. Actuat?2009, 136, 158–162, doi:10.1016/j.snb.2008.10.058.
[32]  Ma, W.; Song, W.; Tian, D.B. ZnO-MWCNTs/Nafion inorganic-organic composite film: Preparation and application in bioelectrochemistry of hemoglobin. Chin. Chem. Lett?2009, 20, 358–361, doi:10.1016/j.cclet.2008.10.025.
[33]  Duan, G.P.; Li, Y.F.; Wen, Y.; Ma, X.L.; Wang, Y.; Ji, J.H.; Wu, P.; Zhang, Z.R.; Yang, H.F. Direct electrochemistry and electrocatalysis of hemoglobin/ZnO-chitosan/nano-au modified glassy carbon electrode. Electroanalysis?2008, 20, 2454–2459, doi:10.1002/elan.200804337.
[34]  Chen, X.; Dong, S.J. Sol-gel-derived titanium oxide/copolymer composite based glucose biosensor. Biosens. Bioelectron?2003, 18, 999–1004, doi:10.1016/S0956-5663(02)00221-X. 12782462
[35]  Kim, M.A.; Lee, W.Y. Amperometric phenol biosensor based on sol-gel silicate/Nafion composite film. Anal. Chim. Acta.?2003, 479, 143–150, doi:10.1016/S0003-2670(02)01538-6.
[36]  Wang, G.; Xu, J.J.; Chen, H.Y.; Lu, Z.H. Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix. Biosens. Bioelectron?2003, 18, 335–343, doi:10.1016/S0956-5663(02)00152-5. 12604250
[37]  Choi, H.N.; Kim, M.A.; Lee, W.Y. Amperometric glucose biosensor based on sol-gel-derived metal oxide/Nafion composite films. Anal. Chim. Acta.?2005, 537, 179–187, doi:10.1016/j.aca.2005.01.010.
[38]  Albuquerque, Y.D.T.; Ferreira, L.F. Amperometric biosensor of carbamate and organophosphate pesticides utilizing screen-printed tyrosinase-modified electrodes. Anal. Chim. Acta.?2007, 596, 210–221, doi:10.1016/j.aca.2007.06.013. 17631099
[39]  Chen, L.Y.; Gu, B.X.; Zhu, G.P.; Wu, Y.F.; Liu, S.Q.; Xu, C.X. Electron transfer properties and electrocatalytic behavior of tyrosinase on ZnO nanorod. J. Electroanal. Chem?2008, 617, 7–13, doi:10.1016/j.jelechem.2008.01.009.
[40]  Gu, B.X.; Xu, C.X.; Zhu, G.P.; Liu, S.Q.; Chen, L.Y.; Li, X.S. Tyrosinase Immobilization on ZnO Nanorods for Phenol Detection. J. Phys. Chem. B?2009, 113, 377–381, doi:10.1021/jp808001c. 19067557
[41]  Li, Y.F.; Liu, Z.M.; Liu, Y.L.; Yang, Y.H.; Shen, G.L.; Yu, R.Q. A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Anal. Biochem?2006, 349, 33–40, doi:10.1016/j.ab.2005.11.017. 16384546
[42]  Liu, Z.M.; Liu, Y.L.; Yang, H.F.; Yang, Y.; Shen, G.L.; Yu, R.Q. A mediator-free tyrosinase biosensor based on ZnO sol-gel matrix. Electroanalysis?2005, 17, 1065–1070, doi:10.1002/elan.200403215.
[43]  Zhao, J.W.; Wu, D.H.; Zhi, J.F. A novel tyrosinase biosensor based on biofunctional ZnO nanorod microarrays on the nanocrystalline diamond electrode for detection of phenolic compounds. Bioelectrochemistry?2009, 75, 44–49, doi:10.1016/j.bioelechem.2009.01.005. 19230793
[44]  Myant, N.B. The Biology of Cholesterol and Related Steroids; Willium Heinemann: London, UK, 1981.
[45]  Fredrickson, D.S.; Levy, R.I. The Metabolic Basis of Inherited Disease; Wyngarden, J.B., Fredrickson, D.D., Eds.; McGraw-Hill: New York, NY, USA, 1972; p. 545.
[46]  Umar, A.; Rahman, M.M.; Vaseem, M.; Hahn, Y.B. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem. Commun?2009, 11, 118–121, doi:10.1016/j.elecom.2008.10.046.
[47]  Singh, S.P.; Arya, S.K.; Pandey, P.; Malhotra, B.D.; Saha, S.; Sreenivas, K.; Gupta, V. Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film. Appl. Phys. Lett?2007, 91, 063901, doi:10.1063/1.2768302.
[48]  Umar, A.; Rahman, M.M.; Al-Hajry, A.; Hahn, Y.B. Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta?2009, 78, 284–289, doi:10.1016/j.talanta.2008.11.018. 19174239
[49]  Khan, R.; Kaushik, A.; Solanki, P.R.; Ansari, A.A.; Pandey, M.K.; Malhotra, B.D. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal. Chim. Acta?2008, 616, 207–213, doi:10.1016/j.aca.2008.04.010. 18482605
[50]  Zhang, F.F.; Wang, X.L.; Ai, S.Y.; Sun, Z.D.; Wan, Q.; Zhu, Z.Q.; Xian, Y.Z.; Jin, L.T.; Yamamoto, K. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta?2004, 519, 155–160, doi:10.1016/j.aca.2004.05.070.
[51]  Bowers, L.D. Applications of immobilizated biocatalysts in chemical analysis. Anal. Chem?1986, 58, 513–530.
[52]  Wang, J.; Liu, J.; Cepra, G. Thermal stabilization of enzymes immobilized within carbon paste electrodes. Anal. Chem?1997, 69, 3124–3127, doi:10.1021/ac9702305. 21639334
[53]  Wang, Y.T.; Yu, L.; Zhu, Z.Q.; Zhang, J.; Zhu, J.Z. Novel uric acid sensor based on enzyme electrode modified by zno nanoparticles and multiwall carbon nanotubes. Anal. Lett?2009, 42, 775–789, doi:10.1080/00032710802677159.
[54]  Ansari, S.G.; Wahab, R.; Ansari, Z.A.; Kim, Y.S.; Khang, G.; Al-Hajry, A.; Shin, H.S. Effect of nanostructure on the urea sensing properties of sol-gel synthesized ZnO. Sens. Actuat?2009, 137, 566–573, doi:10.1016/j.snb.2009.01.018.
[55]  Wu, B.Y.; Hou, S.H.; Yin, F.; Li, J.; Zhao, Z.X.; Huang, J.D.; Chen, Q. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens.Bioelectron?2007, 22, 838–844, doi:10.1016/j.bios.2006.03.009. 16675215
[56]  Shirsat, M.D.; Too, C.O.; Wallace, G.G. Amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film. Electroanalysis?2008, 20, 150–156, doi:10.1002/elan.200704028.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal