The expansion of irrigated agriculture during the Soviet Union (SU) era made Central Asia a leading cotton production region in the world. However, the successor states of the SU in Central Asia face on-going environmental damages and soil degradation that are endangering the sustainability of agricultural production. With Landsat MSS and TM data from 1972/73, 1977, 1987, 1998, and 2000 the expansion and densification of the irrigated cropland could be reconstructed in the Kashkadarya Province of Uzbekistan, Central Asia. Classification trees were generated by interpreting multitemporal normalized difference vegetation index data and crop phenological knowledge. Assessments based on image-derived validation samples showed good accuracy. Official statistics were found to be of limited use for analyzing the plausibility of the results, because they hardly represent the area that is cropped in the very dry study region. The cropping area increased from 134,800 ha in 1972/73 to 470,000 ha in 2009. Overlaying a historical soil map illustrated that initially sierozems were preferred for irrigated agriculture, but later the less favorable solonchaks and solonetzs were also explored, illustrating the strategy of agricultural expansion in the Aral Sea Basin. Winter wheat cultivation doubled between 1987 and 1998 to approximately 211,000 ha demonstrating its growing relevance for modern Uzbekistan. The spatial-temporal approach used enhances the understanding of natural conditions before irrigation is employed and supports decision-making for investments in irrigation infrastructure and land cultivation throughout the Landsat era.
References
[1]
Wehrheim, P.; Martius, C. Farmers, Cotton, Water and Models: Introduction and Overview. In Continuity and Change-Land and Water Use Reforms in Rural Uzbekistan. Socio Economic and Legal Analyses for the Region Khorezm; Wehrheim, P., Schoeller-Schletter, A., Martius, C., Eds.; Studies on the Agricultural and Food Sector in Central and Eastern Europe; Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO): Leipzig, Germany, 2008; Volume 43, pp. 1–15.
[2]
Roll, G.; Alexeeva, N.; Aladin, N.; Plotnikov, I.; Sokolov, V.; Sarsembekov, T.; Micklin, P. Aral Sea: Experience and Lessons Learned Brief. Report Lake Basin Management Initiative; International Lake Environment Committee: Shiga, Japan, 2005; pp. 1–14.
[3]
Létolle, R. Aral; Springer: Paris, France, 1993; p. 517.
[4]
Kooistra, K.; Termorshuizen, A. The Sustainability of Cotton: Consequences for Man and Environment; Science Shop Wageningen University & Research Centre: Wageningen, The Netherlands, 2006; Volume 223, pp. 1–59.
[5]
World Bank. Uzbekistan-Karshi Pumping Cascade Rehabilitation Project. 2002. Available online: http://www-wds.WorldBank.org/external/default/main?pagePK=64193027&piPK=64187937&theSitePK=523679&menuPK=64187510&searchMenuPK=64187283&siteName=WDS&entityID=000094946_00010405304782 (accessed on 29 August 2012).
[6]
Giese, E.; Bahro, G.; Betke, D. Umweltzerst?rungen in Trockengebieten Zentralasiens (West- und Ost-Turkestan). Ursachen, Auswirkungen, Ma?nahmen; Erdkundliches Wissen: Stuttgart, Germany, 1998.
[7]
Micklin, P. The past, present, and future Aral Sea. Lakes Reservoirs Res. Manage 2010, 15, 193–213.
[8]
Abdullaev, I.; de Fraiture, C.; Giordano, M.; Yakubov, M.; Rasulov, A. Agricultural water use and trade in Uzbekistan: Situation and potential of impacts of market liberalization. Water Resour. Dev 2009, 25, 47–63.
[9]
Uzglavgidromet for UNEP. Natsional’naia Programma Deistvii po bor’be c Opustynivaniem v Respublike Uzbekistan; UNEP: Tashkent, Uzbekistan, 2000.
[10]
Kamilov, B. The Use of Irrigation Systems for Sustainable Fish Production: Uzbekistan. FAO Fisheries Technical Paper 430, Fisheries in Irrigation Systems of Arid Asia; FAO: Rome, Italy, 2003; pp. 115–116. Available online: http://www.fao.org/docrep/007/y5082e/y5082e00.htm (accessed on 31 August 2012).
[11]
Droogers, P. Global Irrigated Area Mapping: Overview and Recommendations. Working Paper 36; International Water Management Institute: Colombo, Sri Lanka, 2002; p. 54.
[12]
Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; Vithanage, J.; Schull, M.A.; Dutta, R. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens 2009, 30, 3679–3733.
[13]
Thenkabail, P.S.; Schull, M.; Turral, H. Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sens. Environ 2005, 95, 317–341.
[14]
Gumma, M.; Thenkabail, P.S.; Muralikrishna, I.V.; Velpuri, N.M.; Gangadhararao, P.T.; Dheeravath, V.; Biradar, C.M.; Nalan, S.A.; Gaur, A. Changes in Agricultural Cropland Areas between a water surplus year and water-deficit year impacting food security determined using MODIS 250m time-series data and spectral matching techniques in the Krishna River Basin (India). Int. J. Remote Sens 2011, 32, 3495–3520.
[15]
Ozdogan, M.; Gutman, G. A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US. Remote Sens. Environ 2008, 112, 3520–3537.
[16]
Martinez-Casanovas, J.A.; Martin-Montero, A.; Casterad, M.A. Mapping multi-year cropping patterns in small irrigation districts from time-series analysis of Landsat TM images. Europ. J. Agronomy 2005, 23, 159–169.
[17]
Maxwell, S.K.; Sylvester, K.M. Identification of “ever-cropped” land (1984–2010) using Landsat annual maximum NDVI image composites: Southwestern Kansas case study. Remote Sens. Environ 2012, 121, 186–195.
[18]
Thenkabail, P.S.; Wu, Z. An Automated Cropland Classification Algorithm (ACCA) for Tajikistan by combining Landsat, MODIS, and secondary data. Remote Sens 2012, 4, 2890–2918.
[19]
Birdlife International. Chimkurgan Reservoir. 2011. Available online: http://www.birdlife.org/datazone/sitefactsheet.php?id=22138 (accessed on 31 August 2012).
[20]
WMO (World Meteorological Organization). World Weather Information Service Uzbekistan. 2011. Available online: http://worldweather.wmo.int/032/c00116.htm (accessed on 31 August 2012).
[21]
World Bank. Karshi Pumping Cascade Rehabilitation Phase I Project. Environmental Assessment. Draft Final Report, 2001. Available online: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2002/02/16/000094946_0202020416078/Rendered/INDEX/multi0page.txt (accessed on 1 May 2012).
[22]
GoU (Government of Uzbekistan Ministry of Agriculture and Water Resources). Karshi Pumping Cascade Rehabilitation Phase-1 Project. Institutional Development Program. Project Implementation Planning. Report by the Project Implementation Unit, Government of Uzbekistan Ministry of Agriculture and Water Resources, Tashkent, Uzbekistan, November, 2001. Unpublished.
[23]
Food and Agriculture Organization. A Review of Drought Occurrence and Monitoring and Planning Activities in the Near East Region; FAO: Rome, Italy, 2008. Available online: http://www.fao.org/world/Regional/RNE/morelinks/climate/Drought%20Report%202008%20-%20FAO%20RNE.pdf (accessed on 30 August 2012).
[24]
Bhat, M.M.; Malik, M.I.; Hassan, Z. Regional variations in agricultural productivity—A study of Uzbekistan. J. Phytol 2011, 3, 38–41.
[25]
MAWR (Ministry of Agriculture and Water Ressources, Republic of Uzbekistan). Karshi Pumping Cascade Rehabilitation Project, Environmental Assessment. Final Report; Ministry of Agriculture and Water Ressources, Republic of Uzbekistan: Tashkent, Uzbekistan, 2002.
[26]
Genusov, A.Z; Gorbunov, B.V.; Kimberg, N.V. Soil Map of Uzbekskoi (Uzbekistan), General Directorate of Surveying and Cartography of the Soviet Ministry, GUGK, SSSR 1,500,000, 1960. Available online: http://eusoils.jrc.ec.europa.eu/library/maps/country_maps/metadata.cfm?mycountry=UZ (accessed on 31 August 2012).
[27]
Redo, D. Mapping land-use and land-cover change along Bolivia’s Corredor Bioceánico with CBERS and the Landsat series: 1975–2008. Int. J. Remote Sens 2012, 33, 1881–1904.
[28]
Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ 2008, 112, 3112–3130.
[29]
USGS (United States Geological Survey). Multispectral Scanner, 2011, pp. 125–150. Available online: http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/MSS (accessed on 31 August 2012).
[30]
USGS (United States Geological Survey). Thematic Mapper, 2011. Available online: http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/TM (accessed on 31 August 2012).
[31]
Council of Production Forces of the Republic. Irrigation of Uzbekistan; Tashkent: Uzbekistan, 1979; Volume 3.
CAWATERinfo. Regional Information System on Water and Land Resources in the Aral Sea Basin (CAREWIB). 2012. Available online: www.cawater-info.net/data_ca/ (accessed on 18 August 2012).
[34]
UzStat (Uzbekistan Statistics) Agriculture of Uzbekistan. Tashkent, Uzbekistan, 2009.
[35]
Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled Seamless SRTM Data V4; International Centre for Tropical Agriculture (CIAT), 2008. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 15 January 2011).
[36]
Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ 1979, 8, 127–150.
[37]
Jensen, J.R. Introductory Digital Image Processing, a Remote Sensing Perspective, 3rd ed. ed.; Prentice Hall Series; Pearson Education: London, UK, 2005.
[38]
Conrad, C.; Dech, S.W.; Hafeez, M.; Lamers, J.; Martius, C.; Strunz, G. Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrig. Drain. Syst 2007, 21, 197–218.
[39]
Conrad, C.; Colditz, R.; Dech, S.; Klein, D.; Vlek, P. Improved irrigated crop classification in Central Asia using temporal segmentation and MODIS time series. Int. J. Remote Sens 2011, 32, 8763–8778.
[40]
Murakami, T.; Ogawa, S.; Ishitsuka, N.; Kumagai, K.; Saito, G. Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan. Int. J. Remote Sens 2001, 22, 1335–1348.
[41]
Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data, Principles and Practices; Taylor & Francis Inc: Boca Raton, FL, USA, 2008.
[42]
Lobo, A.; Chic, O.; Casterad, A. Classification of Mediterranean crops with multisensor data: Per-pixel versus per-object statistics and image segmentation. Int. J. Remote Sens 1996, 17, 2385–2400.
[43]
Geneletti, D.; Gorte, B.G.H. A method for object-oriented land cover classification combining Landsat TM data and aerial photographs. Int. J. Remote Sens 2003, 24, 1273–1286.
[44]
Conrad, C.; Fritsch, S.; Zeidler, J.; Rücker, G.; Dech, S. Per-field irrigated crop classification in Arid Central Asia using SPOT and ASTER data. Remote Sens 2010, 2, 1035–1056.
[45]
De Wit, A.J.W.; Clevers, J. Efficiency and accuracy of per-field classification for operational crop mapping. Int. J. Remote Sens 2004, 25, 4091–4112.
[46]
Gallego, J.; Craig, M.; Michaelsen, J.; Bossyns, B.; Fritz, S. Best Practices for Crop Area Estimation with Remote Sensing; GEOSS Community of Practice: Ispra, Italy, 2008.
[47]
Minashina, N. G.; Rozanov, A.N.; Shchuvalov, S.A. Soils. In Environmental Conditions and Natural Resources of the USSR. Middle Asia (in Russian); Gerasimov, I.P., Ed.; Institute of Geography, Academy of Sciences of the USSR: Moscow, Russia, 1968.
[48]
Scheffer, F.; Schachtschabel, P. Lehrbuch der Bodenkunde, 13th ed. ed.; Enke: Stuttgart, Germany, 1992.
[49]
Stahr, K.; Kandeler, E.; Herrmann, L.; Streck, T. Bodenkunde und Standortlehre; Ulmer Verlag: Stuttgart, Germany, 2008.
[50]
Fiedler, H.J. B?den und Bodenfunktionen in ?kosystemen, Landschaften und Ballungsgebieten; Expert Verlag: Renningen, Germany, 2001.
[51]
Van Assche, K.; Djanibekov, N. Spatial planning as policy integration: The need for an evolutionary perspective. Lessons from Uzbekistan. Land Use Policy 2012, 29, 179–186.
[52]
Lüdeke, M.; Petschel-Held, G.; Schellnhuber, H. Syndromes of global change: The first panoramic view. GAIA 2004, 13, 42–49.