Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam impedance; wavelength variations in foam thickness, roughness of foam layer interfaces with air and seawater; and foam scattering parameters such as size parameter, and refraction index. Using these, we analyze the scattering, absorption, reflection and transmission in foam and gain insights into why volume scattering in foam is weak; why the main absorption losses are confined to the wet portion of the foam; how the foam impedance matching provides the transmission of electromagnetic radiation in foam and maximizes the absorption; and what is the potential for surface scattering at the foam layers boundaries. We put all these elements together and offer a conceptual understanding for the high, black-body-like emissivity of foam floating on the sea surface. We also consider possible scattering regimes in foam.
References
[1]
Gemmrich, J.R.; Banner, M.L.; Garrett, C. Spectrally resolved energy dissipation rate and momentum flux of breaking waves. J. Phys. Oceanogr 2008, 38, 1296–1312.
[2]
Andreas, E.L.; Persson, P.O.G.; Hare, J.E. A bulk turbulent air-sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr 2008, 38, 1581–1596.
[3]
Wanninkhof, R.; Asher, W.; Ho, D.; Sweeney, C.; McGillis, W. Advances in quantifying air-sea gas exchange and environmental forcing. Ann. Rev. Mater. Sci 2009, 1, 213–244.
[4]
de Leeuw, G.; Andreas, E.L.; Anguelova, M.D.; Fairall, C.W.; Lewis, E.R.; O’Dowd, C.; Schulz, M.; Schwartz, S.E. Production flux of sea spray aerosol. Rev. Geophys 2011, 49, doi:10.1029/2010RG000349.
[5]
Gordon, H.; Wang, M. Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors. Appl. Opt 1994, 33, 7754–7763.
[6]
Padmanabhan, S.; Reising, S.C.; Asher, W.E.; Rose, L.A.; Gaiser, P.W. Effects of foam on ocean surface microwave emission inferred from radiometric observations of reproducible breaking waves. IEEE Trans. Geosci. Remote Sens 2006, 44, 569–583.
[7]
Deane, G.B. Sound generation and air entrainment by breaking waves in the surf zone. J. Acoust. Soc. Am 1997, 102, 2671–2689.
[8]
Goddijn-Murphy, L.; Woolf, D.K.; Callaghan, A.H. Parameterizations and algorithms for oceanic whitecap coverage. J. Phys. Oceanogr 2011, 41, 742–756.
[9]
Piazzola, J.; Forget, P.; Lafon, C.S.; Despiau, S. Spatial variation of sea-spray fluxes over a Mediterranean coastal zone using a sea state model. Bound.-Lay. Meteorol 2009, 132, 167–183.
[10]
Sugihara, Y.; Tsumori, H.; Ohga, T.; Yoshioka, H.; Serizawa, S. Variation of whitecap coverage with wave-field conditions. J. Mar. Syst 2007, 66, 47–60.
[11]
Thomson, J.; Gemmrich, J.R.; Jessup, A.T. Energy dissipation and the spectral distribution of whitecaps. Geophys. Res. Lett 2009, 36, L11601.
[12]
Callaghan, A.H.; White, M. Automated processing of sea surface images for the determination of whitecap coverage. J. Atmos. Ocean. Technol 2009, 26, 383–394.
[13]
Jessup, A.T.; Zappa, C.J.; Loewen, M.R.; Hesany, V. Infrared remote sensing of breaking waves. Nature 1997, 385, 52–55.
[14]
Nordberg, W.; Conaway, J.; Ross, D.B.; Wilheit, T. Measurements of microwave emission from a foam-covered, wind-driven sea. J. Atmos. Sci 1971, 28, 429–435.
[15]
Anguelova, M.D.; Webster, F. Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. J. Geophys. Res 2006, 111, doi:10.1029/2005JC003158.
[16]
Anguelova, M.; Bettenhausen, M.; Gaiser, P. Passive Remote Sensing of Sea Foam Using Physically-Based Models. Proceedings of the IEEE 2006 International Geoscience and Remote Sensing Symposium (IGARSS), Denver, CO, USA, 31 July–4 August 2006; pp. 3676–3679.
[17]
Anguelova, M.D.; Bobak, J.P.; Asher, W.E.; Dowgiallo, D.J.; Moat, B.I.; Pascal, R.W.; Yelland, M.J. Validation of Satellite-Based Estimates of Whitecap Coverage: Approaches and Initial Results. Prcoeedings of 16th Conference on Air-Sea Interaction, Phoenix, AZ, USA, 11–15 January 2009; p. 14.
[18]
Anguelova, M.D.; Bettenhausen, M.H.; Johnston, W.F.; Gaiser, P.W. First Extensive Whitecap Database and Its Use to Study Whitecap Fraction Variability. Proceedings of the 17th Conference on Air-Sea Interaction, Annapolis, MD, USA, 27–30 September 2010; p. 8.
[19]
Williams, G.F. Microwave emissivity measurements of bubbles and foam. IEEE Trans. Geosci. Elect 1971, 9, 221–224.
Smith, P.M. The emissivity of sea foam at 19-GHz and 37-GHz. IEEE Trans. Geosci. Remote Sens 1988, 26, 541–547.
[22]
Rose, L.A.; Asher, W.E.; Reising, S.C.; Gaiser, P.W.; St Germain, K.M.; Dowgiallo, D.J.; Horgan, K.A.; Farquharson, G.; Knapp, E.J. Radiometric measurements of the microwave emissivity of foam. IEEE Trans. Geosci. Remote Sens 2002, 40, 2619–2625.
[23]
Lewis, E.R.; Schwartz, S.E. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models: A Critical Review; American Geophysical Union: Washington, DC, USA, 2004; p. 413.
[24]
Anguelova, M.D. Complex dielectric constant of sea foam at microwave frequencies. J. Geophys. Res 2008, 113, C08001, doi:10.1029/2007JC004212.
[25]
Anguelova, M.D.; Gaiser, P.W. Skin depth at microwave frequencies of sea foam layers with vertical profile of void fraction. J. Geophys. Res 2011, 116, C11002, doi:10.1029/2011JC007372.
[26]
Leifer, I.; de Leeuw, G. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles. J. Geophys. Res 2006, 111, 18, doi:10.1029/2004JC002673.
[27]
Leifer, I.; Caulliez, G.; de Leeuw, G. Bubbles generated from wind-steepened breaking waves: 2. Bubble plumes, bubbles, and wave characteristics. J. Geophys. Res 2006, 111, 16.
[28]
Militskii, Y.A.; Raizer, V.Y.; Sharkov, E.A.; Etkin, V.S. Scattering of microwave radiation by foamy structures. Rad. Eng. Electron Phys 1977, 22, 46–50.
[29]
Guo, J.J.; Tsang, L.; Asher, W.; Ding, K.H.; Chen, C.T. Applications of dense media radiative transfer theory for passive microwave remote sensing of foam covered ocean. IEEE Trans. Geosci. Remote Sens 2001, 39, 1019–1027.
[30]
Deane, G.B.; Stokes, M.D. Scale dependence of bubble creation mechanisms in breaking waves. Nature 2002, 418, 839–844.
[31]
Stokes, M.D.; Deane, G.B.; Vagle, S.; Farmer, D.M. Measurements of Large Bubbles in Open-Ocean Whitecaps. In Gas Transfer at Water Surfaces; Donelan, M.A., Drennan, W.M., Saltzman, E.S., Wanninkhof, R., Eds.; American Geophysical Union: Washington, DC, USA, 2002.
[32]
Ulaby, F.; Moore, R.; Fung, A. Microwave Remote Sensing: Active and Passive: From Theory to Applications; Book-Mart Press Inc: North Bergen, NJ, USA, 1982; Volume 2, p. 1064.
[33]
Stogryn, A.P. Equations for the Permittivity of Sea Water. Technical Report; GenCorp Aerojet: Azusa, CA, USA, 1997; p. 11.
[34]
Sihvola, A. Electromagnetic Mixing Formulas and Applications; The Institute of Electrical Engineers: London, UK, 1999; p. 284.
[35]
Ulaby, F.; Moore, R.; Fung, A. Microwave Remote Sensing: Active and Passive: Microwave Remote Sensing Fundamentals and Radiometery; Addison-Wesley Publishing: Reading, MA, USA, 1981; Volume 1, p. 456.
[36]
Ulaby, F.; Moore, R.; Fung, A. Microwave Remote Sensing: Active and Passive: From Theory to Applications; Book-Mart Press Inc.: North Bergen, NJ, USA, 1986; Volume 3, p. 2162.
[37]
van de Hulst, H.C. Light Scattering by Small Particles; Diver Publications: New York, NY, USA, 1981; p. 470.
[38]
Stratton, J.A. Electromagnetic Theory; McGraw-Hill Book Company Inc: New York, NY, USA, 1941; p. 615.
[39]
Raizer, V. Macroscopic foam-spray models for ocean microwave radiometry. IEEE Trans. Geosci. Remote Sens 2007, 45, 3138–3144.
[40]
Dombrovskiy, L.A. Absorption and scattering of microwave radiation by spherical water shells. Izv. Atmos. Ocean. Phys 1982, 17, 238–241.
[41]
Peake, W. Interaction of electromagnetic waves with some natural surfaces. IRE Trans. Ant. Propag 1959, 7, S324–S329.
[42]
Brekhovskikh, L.M. Reflection Reduction of Optical Systems. In Waves in Layered Media, 1980 ed. ed.; Academic Press: New York, NY, USA, 1980; p. 503.
[43]
Pierson, W.J.; Stacy, R.A. The Elevation, Slope, and Curvature Spectra of a Wind Roughened Sea Surface. Report NASA CR-2247; NASA: Washington, DC, USA, 1973; p. 126.
[44]
Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janseen, P.A.E.M. Dynamics and Modeling of Ocean Waves; Cambridge University Press: Cambridge, London, UK, 1994; p. 532.
[45]
Smith, S.D. Coefficients for sea-surface wind stress, heat-flux, and wind profiles as a function of wind-speed and temperature. J. Geophys. Res 1988, 93, 15467–15472.
[46]
Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for tropical ocean global atmosphere coupled ocean atmosphere response experiment. J. Geophys. Res 1996, 101, 3747–3764.
[47]
Hwang, P.A. Wave number spectrum and mean square slope of intermediate-scale ocean surface waves. J. Geophys. Res 2005, 110, 7.
[48]
Wilheit, T.T. Model for the microwave emissivity of the oceans surface as a function of wind-speed. IEEE Trans. Geosci. Remote Sens 1979, 17, 244–249.
[49]
Wentz, F.; Meissner, T. Algorithm Theoretical Basis Document (ATBD): Amsr Ocean Algorithm. RSS Tech. Proposal 121599A-1; Remore Sensing Systems: Santa Rosa, CA, USA, 2000.
[50]
Williams, G.F. Microwave radiometry of ocean and possibility of marine wind velocity determination from satellite observations. J. Geophys. Res 1969, 74, 4591–4594.
[51]
Webster, W.J.; Wilheit, T.T.; Ross, D.B. Spectral characteristics of microwave emission from a wind-driven foam-covered sea. J. Geophys. Res 1976, 81, 3095–3099.
[52]
Sharkov, E.A. Passive Microwave Remote Sensing of the Earth; Praxis: Chichester, UK, 2003; p. 613.
[53]
de Wolf, T.; Holvoet, T. Emergence versus Self-Organisation: Different Concepts but Promising When Combined. In Engineering Self-Organising Systems: Methodologies and Applications; Brueckner, S.A., Di Marzo, S., Karageorgos, A., Nagpal, R., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2005; pp. 1–15.
[54]
Tsang, L.; Kong, J.A.; Shin, R.T. Theory of Microwave Remote Sensing; Wiley&Sons: New York, NY, USA, 1985; p. 613.
[55]
Aden, A.L.; Kerker, M. Scattering of electromagnetic waves from 2 concentric spheres. J. Appl. Phys 1951, 22, 1242–1246.
[56]
Dombrovskiy, L.A. Light scattering and absorption by hollow spherical particles. Izv. Atmos.Ocean. Phys 1974, 10, 720–727.
[57]
Dombrovskiy, L.A. Calculation of thermal radio emission from foam on the sea surface. Izv. Atmos. Ocean. Phys 1979, 15, 193–198.
[58]
Camps, A.; Vall-Ilossera, M.; Villarino, R.; Reul, N.; Chapron, B.; Corbella, I.; Duffo, N.; Torres, F.; Miranda, J.J.; Sabia, R.; et al. The emissivity of foam-covered water surface at l-band: Theoretical modeling and experimental results from the frog 2003 field experiment. IEEE Trans. Geosci. Remote Sens 2005, 43, 925–937.
[59]
Anguelova, M.D.; Huq, P. Characteristics of bubble clouds at various wind speeds. J. Geophys. Res 2012, 117, C03036, doi:10.1029/2011JC007442.
[60]
Deane, G.B.; Stokes, M.D. Air entrainment processes and bubble size distributions in the surf zone. J. Phys. Oceanogr 1999, 29, 1393–1403.
[61]
Ray, P.S. Broad-band complex refractive indexes of ice and water. Appl. Opt 1972, 11, 1836–1844.
[62]
Paris, J.F. Microwave Radiometry and Its Application to Marine Meteorology and Oceanography. Tech. Rep. Ref. No. 69-1T; Department of Oceanography, Texas A&M University: College Station, TX, USA, 1969; p. 210.
[63]
Maul, G.A. Introduction to Satellite Oceanography; Martinus Nijhoff Publishers: Boston, MA, USA, 1985; p. 606.