全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adaptive Slope Filtering of Airborne LiDAR Data in Urban Areas for Digital Terrain Model (DTM) Generation

DOI: 10.3390/rs4061804

Keywords: airborne LiDAR, filtering, slope variation

Full-Text   Cite this paper   Add to My Lib

Abstract:

A filtering algorithm is proposed that accurately extracts ground data from airborne light detection and ranging (LiDAR) measurements and generates an estimated digital terrain model (DTM). The proposed algorithm utilizes planar surface features and connectivity with locally lowest points to improve the extraction of ground points (GPs). A slope parameter used in the proposed algorithm is updated after an initial estimation of the DTM, and thus local terrain information can be included. As a result, the proposed algorithm can extract GPs from areas where different degrees of slope variation are interspersed. Specifically, along roads and streets, GPs were extracted from urban areas, from hilly areas such as forests, and from flat area such as riverbanks. Validation using reference data showed that, compared with commercial filtering software, the proposed algorithm extracts GPs with higher accuracy. Therefore, the proposed filtering algorithm effectively generates DTMs, even for dense urban areas, from airborne LiDAR data.

References

[1]  Sithole, G.; Vosselman, G. Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds. ISPRS J. Photogramm 2004, 59, 85–101.
[2]  Vosselman, G. Slope based filtering of laser altimetry data. Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci 2000, 33(B4), 935–942.
[3]  Sithole, G. Filtering of laser altimetry data using a slope adaptive filter. Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci 2001, 34(Pt. 3/W4), 203–210.
[4]  Petzold, B.; Reiss, P.; Stossel, W. Laser scanning-surveying and mapping agencies are using a new technique for the derivation of digital terrain models. ISPRS J. Photogramm 1999, 54, 95–104.
[5]  Wack, R.; Wimmer, A. Digital terrain models from airborne laser scanner data—A grid based approach. Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci 2002, 34(Pt. 3B), 293–296.
[6]  Sithole, G.; Vosselman, G. Filtering of airborne laser scanner data based on segmented point clouds. Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci 2005, 36(Part 3/W19), 66–71.
[7]  Zhang, K.; Chen, S.; Whitman, D.; Shyu, M.; Yan, J.; Zhang, C. A progressive morphological filter for removing non-ground measurements from airborne lidar data. IEEE Trans. Geosci. Remote Sens 2003, 41, 872–882.
[8]  Chen, Q.; Gong, P.; Baldocchi, D.; Xie, G. Filtering airborne laser scanning data with morphological methods. Photogramm. Eng. Remote Sensing 2007, 73, 175–185.
[9]  Meng, X.; Currit, N.; Zhao, K. Ground filtering algorithms for airborne LiDAR data: A review of critical issues. Remote Sens 2010, 2, 833–860.
[10]  Lu, W.; Murphy, K.P.; Little, J.J.; Sheffer, A.; Fu, H. A hybrid conditional random field for estimating the underlying ground surface from airborne LiDAR data. IEEE Trans. Geosci. Remote Sens 2009, 47, 2913–2922.
[11]  Yuan, F.; Zhang, J.; Zhang, L.; Gao, J. Urban DEM Generation from Airborne Lidar Data. Proceedings of Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009.
[12]  Axelsson, P. Processing of laser scanner data—Algorithms and applications. ISPRS J. Photogramm. 1999, 54, 138–147.
[13]  Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci 2000, 33(Part B4/1), 110–117.
[14]  Kobler, A.; Pfeifer, N.; Ogrinc, P.; Todorovski, L.; O?tir, K.; D?eroski, S. Repetitive interpolation: A robust algorithm for DTM generation from aerial laser scanner data in forested terrain. Remote Sens. Environ 2007, 108, 9–23.
[15]  Terra Scan User’s Guide, Available online: http://www.terrasolid.fi/system/files/tscan_2.pdf (accessed on 31 August 2011).
[16]  Wang, M.; Tseng, Y.H.; Chou, F.C. DEM Generation Using Adaptive Point Cloud Filtering Algorithm. Proceedings of the 25th Asia Conference on Remote Sensing, Chiang Mai, Thailand, 22–26 November 2004; pp. 55–60.
[17]  Wang, C.K.; Tseng, Y.H. DEM generation from airborne LiDAR data by adaptive dual-directional slope filter. Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci 2010, 38(Part 7B), 628–632.
[18]  Mongus, D.; ?alik, B. Parameter-free ground filtering of LiDAR data for automatic DTM generation. ISPRS J. Photogramm 2012, 67, 1–12.
[19]  Tóvári, D.; Pfeifer, N. Segmentation based robust interpolation—A new approach to laser data filtering. Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci 2005, 36(Part 3/W19), 79–84.
[20]  Bretar, F.; Chehata, N. Terrain modeling from LiDAR range data in natural landscapes: A predictive and Bayesian framework. IEEE Trans. Geosci. Remote Sens 2010, 48, 1568–1578.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133