All Title Author
Keywords Abstract

Pharmaceutics  2012 

Trojan Microparticles for Drug Delivery

DOI: 10.3390/pharmaceutics4010001

Keywords: pharmaceutical nanotechnologies, microparticles, microspheres, vectors, solubility, permeability, dosage form, administration routes, drug targeting, release, nanoemulsion, trojan

Full-Text   Cite this paper   Add to My Lib


During the last decade, the US Food and Drug Administration (FDA) have regulated a wide range of products, (foods, cosmetics, drugs, devices, veterinary, and tobacco) which may utilize micro and nanotechnology or contain nanomaterials. Nanotechnology allows scientists to create, explore, and manipulate materials in nano-regime. Such materials have chemical, physical, and biological properties that are quite different from their bulk counterparts. For pharmaceutical applications and in order to improve their administration (oral, pulmonary and dermal), the nanocarriers can be spread into microparticles. These supramolecular associations can also modulate the kinetic releases of drugs entrapped in the nanoparticles. Different strategies to produce these hybrid particles and to optimize the release kinetics of encapsulated drugs are discussed in this review.


[1]  Freitas, R.A., Jr. Nanotechnology, nanomedicine and nanosurgery. Int. Surg. 2005, 3, 243–246, doi:10.1016/j.ijsu.2005.10.007.
[2]  Kreuter, J. Colloidal Drug Delivery Systems; Nanoparticles, Marcel Dekker: New York, NY, USA, 1994.
[3]  Antonietti, M.; Landfester, K. Polyreactions in miniemulsions. Prog. Polym. Sci. 2002, 27, 689–757, doi:10.1016/S0079-6700(01)00051-X.
[4]  Asua, J. Miniemulsion polymerization. Prog. Polym. Sci. 2002, 27, 1283–1346, doi:10.1016/S0079-6700(02)00010-2.
[5]  Couvreur, P.; Barratt, G.; Fattal, E.; Legrand, P.; Vauthier, C. Nanocapsule technology: A review. Crit. Rev. Ther. Drug Carr. Syst. 2002, 19, 99–134, doi:10.1615/CritRevTherDrugCarrierSyst.v19.i2.10.
[6]  Anton, N.; Benoit, J.; Saulnier, P. Design and production of nanoparticles formulated from nanoemulsion templates—A review. J. Control. Release 2008, 128, 185–199, doi:10.1016/j.jconrel.2008.02.007.
[7]  Gómez-Gaete, C.; Fattal, E.; Silva, L.; Besnard, M.; Tsapis, N. Dexamethasone acetate encapsulation into Trojan particles. J. Control. Release 2008, 128, 41–49, doi:10.1016/j.jconrel.2008.02.008.
[8]  Thote, A.; Gupta, R. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomed. Nanotechnol. Biol. Med. 2005, 1, 85–90, doi:10.1016/j.nano.2004.12.001.
[9]  Wang, Y.; Dave, R.N.; Pfeffer, R. Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process. J. Supercrit. Fluids 2004, 28, 85–99, doi:10.1016/S0896-8446(03)00011-1.
[10]  Chen, A.Z.; Li, Y.; Chau, F.T.; Lau, T.Y.; Hua, J.Y.; Zhao, Z.; Mok, D.K. Microencapsulation of puerarin nanoparticles by poly(L-lactide) in a supercritical CO2 process. Acta Biomater. 2009, 5, 2913–2919, doi:10.1016/j.actbio.2009.04.032.
[11]  Vehring, R. Pharmaceutical particle engineering via spray drying. Pharm. Res. 2008, 25, 999–1021, doi:10.1007/s11095-007-9475-1.
[12]  Schuck, P.; Dolivet, A.; Méjean, S.; Zhu, P.; Blanchard, E.; Jeantet, R. Drying by desorption: A tool to determine spray drying parameters. J. Food Eng. 2008, 94, 199–204.
[13]  Richard, J.; Benoit, J.P. Microencapsulation. Tech. l’ingénieur 2000, J2 210, 1–20.
[14]  Langrish, T.; Marquez, N.; Kota, K. An investigation and quantitative assessment of particle shape in milk powders from a laboratory-scale spray dryer. Dry. Technol. 2006, 24, 1619–1630, doi:10.1080/07373930601031133.
[15]  Elversson, J.; Millqvist-Fureby, A. Particle size and density in spray drying-effects of carbohydrate properties. J. Pharm. Sci. 2005, 94, 2049–2060, doi:10.1002/jps.20418.
[16]  Bain, D.; Munday, D.; Smith, A. Solvent influence on spray-dried biodegradable microspheres. J. Microencapsul. 1999, 16, 453–474, doi:10.1080/026520499288915.
[17]  Wang, F.; Wang, C. Sustained release of etanidazole from spray dried microspheres prepared by non-halogenated solvents. J. Control. Release 2002, 81, 263–280, doi:10.1016/S0168-3659(02)00066-4.
[18]  Raula, J.; Eerikainen, H.; Kauppinen, E. Influence of the solvent composition on the aerosol synthesis of pharmaceutical polymer nanoparticles. Int. J. Pharm. 2004, 284, 13–21, doi:10.1016/j.ijpharm.2004.07.003.
[19]  Maa, Y.; Costantino, H.; Nguyen, P.; Hsu, C. The effect of operating and formulation variables on the morphology of spray-dried protein particles. Pharm. Dev. Technol. 1997, 2, 213–223, doi:10.3109/10837459709031441.
[20]  Nijdam, J.; Langrish, T. An investigation of milk powders produced by a laboratory-scale spray dryer. Dry. Technol. 2005, 23, 1043–1056, doi:10.1081/DRT-200060208.
[21]  Wang, F.; Wang, C. Effects of fabrication conditions on the characteristics of etanidazole spray dried microspheres. J. Microencapsul. 2002, 19, 495–510, doi:10.1080/02652040210140483.
[22]  Tsapis, N.; Bennett, D.; Jackson, B.; Weitz, D.; Edwards, D. Trojan particles: Large porous carriers of nanoparticles for drug delivery. Proc. Natl. Acad. Sci. USA 2002, 99, 12001–12005, doi:10.1073/pnas.182233999. 12200546
[23]  Strook, A.; Dertinger, S.; Ajdari, A.; Mezic, I.; Stone, H.; Whitesides, G. Chaotic mixer for microchannels. Science 2002, 295, 647–651, doi:10.1126/science.1066238.
[24]  Tsapis, N.; Dufresne, E.R.; Sinha, S.S.; Riera, C.S.; Hutchinson, J.W.; Mahadevan, L.; Weitz, D.A. Onset of Buckling in Drying Droplets of Colloidal Suspensions. Phys. Rev. Lett. 2005, 94, 018302–018305, doi:10.1103/PhysRevLett.94.018302. 15698142
[25]  Marty, G.; Tsapis, N. Monitoring the buckling threshold of drying colloidal droplets using water-ethanol mixtures. Eur. Phys. J. E 2008, 27, 213–219, doi:10.1140/epje/i2008-10375-6.
[26]  Li, X.; Anton, N.; Ta Minh, C.; Zhao, M.; Messaddeq, N.; Vandamme, T. Microencapsulation of nanoemulsions: Novel Trojan particles for lipid bioactive molecule delivery. Int. J. Nanomed. 2011, 6, 1313–1325.
[27]  Li, X.; Anton, N.; Cordin, A.; Belleteix, F.; Vandamme, T. Nanoparticles by spray drying using innovative new technology: The Büchi nano spray dryer B-90. J. Control. Release 2010, 147, 304–310, doi:10.1016/j.jconrel.2010.07.113.
[28]  Vehring, R.; Foss, W.; Lechuga-Ballesteros, D. Particle formation in spray drying. J. Aerosol Sci. 2007, 38, 728–746, doi:10.1016/j.jaerosci.2007.04.005.
[29]  Maury, M.; Murphy, K.; Kumar, S.; Maurer, A.; Lee, G. Spray-drying of proteins: Effects of sorbitol and trehalose on aggregation and FT-IR amide I spectrum of an immunoglobulin G. Eur. J. Pharm. Biopharm. 2005, 59, 251–261, doi:10.1016/j.ejpb.2004.07.010.
[30]  Chew, N.; Chan, H. Use of solid corrugated particles to enhance powder performance. Pharm. Res. 2001, 18, 1570–1577, doi:10.1023/A:1013082531394.
[31]  Maa, Y.; Nguyen, P.; Hsu, S. Spray-drying of air liquid interface sensitive recombinant human growth hormone. J. Pharm. Sci. 1998, 87, 152–159, doi:10.1021/js970308x.
[32]  Ameri, M.; Maa, Y.F. Spray drying of biopharmaceuticals: Stability and process considerations. Dry. Technol. 2006, 24, 763–768, doi:10.1080/03602550600685275.
[33]  Samborska, K.; Witrowa-Rajchert, D.; Goncalves, A. Spray-drying of alpha-amylase—The effect of process variables on the enzyme inactivation. Dry. Technol. 2005, 23, 941–953, doi:10.1081/DRT-200054243.
[34]  Zijlstra, G.; Hinrichs, W.; de Boer, A.; Frijlink, H. The role of particle engineering in relation to formulation and de-agglomeration principle in the development of a dry powder formulation for inhalation of cetrorelix. Eur. J. Pharm. Sci. 2004, 23, 139–149, doi:10.1016/j.ejps.2004.06.005.
[35]  Stahl, K.; Claesson, M.; Lilliehorn, P.; Linden, H.; Backstrom, K. The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation. Int. J. Pharm. 2002, 233, 227–237, doi:10.1016/S0378-5173(01)00945-0.
[36]  Bittner, B.; Kissel, T. Ultrasonic atomization for spray drying: A versatile technique for the preparation of protein loaded biodegradable microspheres. J. Microencapsul. 1999, 16, 325–341, doi:10.1080/026520499289059.
[37]  Ting, T.Y.; Gonda, I.; Gipps, E. Microparticles of polyvinyl alcohol for nasal delivery. I. Generation by spray- drying and spray-desolvation. Pharm. Res. 1992, 9, 1330–1335, doi:10.1023/A:1015869704171.
[38]  Baras, B.; Benoit, M.A.; Gillard, J. Parameters influencing the antigen release from spray-dried poly(DL-Lactide) micro-particles. Int. J. Pharm. 2000, 200, 133–145, doi:10.1016/S0378-5173(00)00363-X.
[39]  Li, H.; Birchall, J. Chitosan-modified dry powder formulations for pulmonary gene delivery. Pharm. Res. 2006, 23, 941–950, doi:10.1007/s11095-006-0027-x.
[40]  Mu, L.; Feng, S. Fabrication, characterization and in vitro release of paclitaxel (taxol) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J. Control. Release 2001, 76, 239–254, doi:10.1016/S0168-3659(01)00440-0.
[41]  Fu, Y.; Mi, F.; Wong, T.; Shyu, S.S. Characteristic and controlled release of anticancer drug loaded poly (D,L- Lactide) microparticles prepared by spray drying technique. J. Microencapsul. 2001, 18, 733–747, doi:10.1080/02652040010055649.
[42]  Hadinoto, K.; Zhu, K.; Tan, R. Drug release study of large hollow nanoparticulate aggregates carrier particles for pulmonary delivery. Int. J. Pharm. 2007, 341, 195–206, doi:10.1016/j.ijpharm.2007.03.035.
[43]  Grenha, A.; Seijo, B.; Remunan Lopez, C. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur. J. Pharm. Sci. 2005, 25, 427–437, doi:10.1016/j.ejps.2005.04.009.
[44]  Tewa-Tagne, P.; Brian?on, S.; Fessi, H. Spray-dried microparticles containing polymeric nanocapsules: Formulation aspects, liquid phase interactions and particles characteristics. Int. J. Pharm. 2006, 325, 63–74, doi:10.1016/j.ijpharm.2006.06.025.
[45]  Iwata, M.; Tanaka, T.; Nakamura, Y.; McGinity, J.W. Selection of the solvent system for the preparation of poly(D,L-lactic-co-glycolic acid) microspheres containing tumor necrosis factor alpha (TNF-α). Int. J. Pharm. 1998, 160, 145–156, doi:10.1016/S0378-5173(97)00306-2.
[46]  Iwata, M.; Nakamura, Y.; McGinity, J.W. Particle size and loading efficiency of poly(D,L-lactic-co-glycolic acid) multiphase microspheres containing water soluble substances prepared by the hydrous and anhydrous solvent evaporation methods. J. Microencapsul. 1999, 16, 49–58, doi:10.1080/026520499289301.
[47]  Okuyama, K.; Abdullah, M.; Lenggoro, I.; Iskandar, F. Preparation of functional nanostructured particles by spray drying. Adv. Powder Technol. 2006, 17, 587–611, doi:10.1163/156855206778917733.
[48]  Sheikh Hasan, A.; Socha, M.; Lamprecht, A.; El Ghazouani, F.; Sapin, A.; Hoffman, M.; Maincent, P.; Ubrich, N. Effect of the microencapsulation of nanoparticles on the reduction of burst effect. Int. J. Pharm. 2007, 344, 53–61, doi:10.1016/j.ijpharm.2007.05.066.
[49]  Bhavsar, M.D.; Amiji, M.M. Gastroinstestinal distribution and in vivo gene transfection studies with nanoparticles-in-microspheres oral system (NiMOS). J. Control. Release 2007, 119, 339–348, doi:10.1016/j.jconrel.2007.03.006.
[50]  Joshi, A.; Keerthiprasad, R.; Dev Jayant, R.; Srivastava, R. Nano-in-micro alginate based hybrid particles. Carbohydr. Polym. 2010, 81, 790–798, doi:10.1016/j.carbpol.2010.03.050.
[51]  Edwards, D.A.; Hanes, J.; Caponetti, G.; Hrkach, J.; Ben-Jebria, A.; Eskew, M.L.; Mintzes, J.; Deaver, D.; Lotan, N.; Langer, R. Large porous particles for pulmonary drug delivery. Science 1997, 276, 1868–1871, doi:10.1126/science.276.5320.1868. 9188534
[52]  Hadinoto, K.; Phanapavudhikul, P.; Kewu, Z.; Tan, R.B.H. Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: Effects of phospholipids. Int. J. Pharm. 2007, 333, 187–198, doi:10.1016/j.ijpharm.2006.10.009.
[53]  Muttil, P.; Pulliam, B.; Garcia-Contreras, L.; Fallon, J.K.; Wang, C.; Hickey, A.J.; Edwards, D.A. Pulmonary immunization of guinea pigs with diphtheria CRM-197 antigen as nanoparticle aggregate dry powders enhance local and systemic immune responses. AAPS J. 2010, 12, 699–707, doi:10.1208/s12248-010-9229-6.
[54]  Sung, J.C.; Padilla, D.J.; Garcia-Contreras, L.; Verberkmoes, J.L.; Durbin, D.; Peloquin, C.A.; Elbert, K.J.; Hickey, A.J.; Edwards, D.A. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm. Res. 2009, 26, 1847–1855, doi:10.1007/s11095-009-9894-2.
[55]  Al-Qadi, S.; Grenha, A.; Remunan-Lopez, C. Microspheres loaded with polysaccharide nanoparticles for pulmonary delivery: Preparation, structure and surface analysis. Carbohydr. Polym. 2011, 86, 25–34, doi:10.1016/j.carbpol.2011.03.022.
[56]  El-Sherbiny, I.M.; Smyth, H.D.C. Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery: (I) Self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres. Int. J. Pharm. 2010, 395, 132–141, doi:10.1016/j.ijpharm.2010.05.032.
[57]  Grenha, A.; Seijo, B.; Serra, C.; Remunan-Lopez, C. Chitosan nanoparticle-loaded mannitol microspheres: Structure and surface characterization. Biomacromolecules 2007, 8, 2072–2079, doi:10.1021/bm061131g.
[58]  Wang, N.; Wu, X.S.; Li, J.K. A heterogeneously structured composite based on poly(lactic-co-glycolic acid) microspheres and poly(vinyl alcohol) hydrogel nanoparticles for long term protein drug delivery. Pharm. Res. 1999, 16, 1430–1435, doi:10.1023/A:1018911411381.
[59]  Sham, J.O.H.; Zhang, Y.; Finlay, W.H.; Roa, W.H.; Lobenberg, R. Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int. J. Pharm. 2004, 269, 457–467, doi:10.1016/j.ijpharm.2003.09.041.
[60]  El-Sherbiny, I.M.; Abdel-Mogib, M.; Dawidar, A.A.M.; Elsayed, A.; Smyth, H.D.C. Biodegradable pH-responsive alginate-poly (lactic-co-glycolic acid) nano/micro hydrogel matrices for oral delivery of silymarin. Carbohydr. Polym. 2011, 83, 1345–1354, doi:10.1016/j.carbpol.2010.09.055.
[61]  Bhavsar, M.D.; Amiji, M.M. Development of novel biodegradable polymeric nanoparticles-in-microsphere formulation for local plasmid DNA delivery in the gastrointestinal tract. AAPS PharmSciTech 2008, 9, 288–294, doi:10.1208/s12249-007-9021-9.
[62]  Kang, M.J.; Oh, I.Y.; Choi, B.C.; Kwak, B.K.; Lee, J.; Choi, Y.W. Development of superparamagnetic iron oxide nanoparticles (SPIOs)-embedded chitosanmicrospheres formagnetic resonance (MR)-traceable embolotherapy. Biomol. Ther. 2009, 17, 98–103, doi:10.4062/biomolther.2009.17.1.98.
[63]  Yin, H.; Yu, S.; Casey, P.S.; Chow, G.M. Synthesis and properties of poly(D,L-lactide) drug carrier with maghemite nanoparticles. Mater. Sci. Eng. C 2010, 30, 618–623, doi:10.1016/j.msec.2010.02.013.
[64]  Cui, S.; Shen, X.; Shi, R.; Lin, B.; Chen, P. Preparation of paclitaxel-loaded microspheres with magnetic nanoparticles. Front. Mater. Sci. China 2007, 1, 383–387, doi:10.1007/s11706-007-0070-5.
[65]  Zhou, S.; Sun, J.; Sun, L.; Dai, Y.; Liu, L.; Li, X.; Wang, J.; Weng, J.; Jia, W.; Zhang, Z. Preparation and characterization of interferon-loaded magnetic biodegradable microspheres. J. Biomed. Mater. Res. Part B 2008, 87, 189–196.
[66]  Sadjadi, M.S.; Farhadyar, N.; Zare, K. Biocatalytic activity of fungal protease on silver nanoparticle-loaded zeolite X microspheres. J. Nanosci. Nanotechnol. 2009, 9, 1365–1368, doi:10.1166/jnn.2009.C158.
[67]  Lee, D.; Cohen, R.E.; Rubner, M.F. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 2005, 21, 9651–9659, doi:10.1021/la0513306.
[68]  Park, J.S.; Park, K.; Woo, D.G.; Yang, H.N.; Chung, H.M.; Park, K.H. PLGA microsphere construct coated with TGF-Beta 3 loaded nanoparticles for neocartilage formation. Biomacromolecules 2008, 9, 2162–2169, doi:10.1021/bm800251x.
[69]  Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Persp. 2005, 113, 823–840, doi:10.1289/ehp.7339.


comments powered by Disqus