All Title Author
Keywords Abstract

Nutrients  2012 

Targeting Cell Signaling and Apoptotic Pathways by Luteolin: Cardioprotective Role in Rat Cardiomyocytes Following Ischemia/Reperfusion

DOI: 10.3390/nu4122008

Keywords: luteolin, ischemia/reperfusion (I/R), ischemia reperfusion injury (IRI), cardiomyocytes, mechanism, apoptosis

Full-Text   Cite this paper   Add to My Lib


Myocardial ischemia often results in damaged heart structure and function, which can be restored through ischemia/reperfusion (I/R) in most cases. However, I/R can exacerbate myocardial ischemia reperfusion injury (IRI). Luteolin, a widely distributed flavonoid, a member of a group of naturally occurring polyphenolic compounds found in many fruits, vegetables and medicinal herbs, has been reported to exhibit anti-inflammatory, antioxidant and anti-carcinogenic activities. In recent years, luteolin has been shown to play an important role in the cardioprotection of IRI. However, its role and mechanism in cardioprotection against IRI has not been clearly elucidated with respect to the apoptosis pathway. The purpose of this paper is to review luteolin’s anti-apoptotic role and mechanism following I/R in rats, and indicate luteolin as a potential candidate for preventing and treating cardiovascular diseases.


[1]  Minamino, T. Cardioprotection from ischemia/reperfusion injury: Basic and translational research. Circ. J. 2012, 76, 1074–1082, doi:10.1253/circj.CJ-12-0132.
[2]  Moens, A.L.; Claeys, M.J.; Timmermans, J.P.; Vrints, C.J. Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int. J. Cardiol. 2005, 100, 179–190, doi:10.1016/j.ijcard.2004.04.013.
[3]  Crozier, S.J.; Zhang, X.; Wang, J.; Cheung, J.; Kimball, S.R.; Jefferson, L.S. Activation of signaling pathways and regulatory mechanisms of mRNA translation following myocardial ischemia-reperfusion. J. Appl. Physiol. 2006, 101, 576–582, doi:10.1152/japplphysiol.01122.2005.
[4]  Tian, Z.; Zheng, H.; Li, J.; Li, Y.; Su, H.; Wang, X. Genetically induced moderate inhibition of the proteasome in cardiomyocytes exacerbates myocardial ischemia-reperfusion injury in mice. Circ. Res. 2012, 111, 532–542, doi:10.1161/CIRCRESAHA.112.270983.
[5]  Fukuyama, N.; Tanaka, E.; Tabata, Y.; Fujikura, H.; Hagihara, M.; Sakamoto, H.; Ando, K.; Nakazawa, H.; Mori, H. Intravenous injection of phagocytes transfected ex vivo with FGF4 DNA/biodegradable gelatin complex promotes angiogenesis in a rat myocardial ischemia/reperfusion injury model. Basic Res. Cardiol. 2007, 102, 209–216, doi:10.1007/s00395-006-0629-9.
[6]  Eltzschig, H.K.; Eckle, T. Ischemia and reperfusion—from mechanism to translation. Nat. Med. 2011, 17, 1391–1401, doi:10.1038/nm.2507.
[7]  Akhlaghi, M.; Bandy, B. Preconditioning and acute effects of flavonoids in protecting cardiomyocytes from oxidative cell death. Oxid. Med. Cell. Longev. 2012, 2012, 782321, doi:10.1155/2012/782321.
[8]  Middleton, E., Jr.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751.
[9]  Marniemi, J.; Alanen, E.; Impivaara, O.; Seppanen, R.; Hakala, P.; Rajala, T.; Ronnemaa, T. Dietary and serum vitamins and minerals as predictors of myocardial infarction and stroke in elderly subjects. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 188–197, doi:10.1016/j.numecd.2005.01.001.
[10]  Lopez-Lazaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem. 2009, 9, 31–59, doi:10.2174/138955709787001712.
[11]  Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets 2008, 8, 634–646, doi:10.2174/156800908786241050.
[12]  Mulvihill, E.E.; Huff, M.W. Antiatherogenic properties of flavonoids: Implications for cardiovascular health. Can. J. Cardiol. 2010, 26, 17A–21A, doi:10.1016/S0828-282X(10)71056-4.
[13]  Cai, X.; Lu, W.; Ye, T.; Lu, M.; Wang, J.; Huo, J.; Qian, S.; Wang, X.; Cao, P. The molecular mechanism of luteolin-induced apoptosis is potentially related to inhibition of angiogenesis in human pancreatic carcinoma cells. Oncol. Rep. 2012, 28, 1353–1361.
[14]  Liao, P.H.; Hung, L.M.; Chen, Y.H.; Kuan, Y.H.; Zhang, F.B.; Lin, R.H.; Shih, H.C.; Tsai, S.K.; Huang, S.S. Cardioprotective effects of luteolin during ischemia-reperfusion injury in rats. Circ. J. 2011, 75, 443–450, doi:10.1253/circj.CJ-10-0381.
[15]  Akhlaghi, M.; Bandy, B. Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 2009, 46, 309–317, doi:10.1016/j.yjmcc.2008.12.003.
[16]  Kim, D.S.; Kwon, D.Y.; Kim, M.S.; Kim, H.K.; Lee, Y.C.; Park, S.J.; Yoo, W.H.; Chae, S.W.; Chung, M.J.; Kim, H.R.; et al. The involvement of endoplasmic reticulum stress in flavonoid-induced protection on cardiac cell death caused by ischaemia/reperfusion. J. Pharm. Pharmacol. 2010, 62, 197–204.
[17]  Jiang, F.; Chang, C.W.; Dusting, G.J. Cytoprotection by natural and synthetic polyphenols in the heart: Novel mechanisms and perspectives. Curr. Pharm. Des. 2010, 16, 4103–4112, doi:10.2174/138161210794519174.
[18]  Fliss, H.; Gattinger, D. Apoptosis in ischemic and reperfused rat myocardium. Circ. Res. 1996, 79, 949–956, doi:10.1161/01.RES.79.5.949.
[19]  Zhao, Z.Q. Oxidative stress-elicited myocardial apoptosis during reperfusion. Curr. Opin. Pharmacol. 2004, 4, 159–165, doi:10.1016/j.coph.2003.10.010.
[20]  He, D.; Ma, X.; Chen, Y.; Cai, Y.; Ru, X.; Bruce, I.C.; Xia, Q.; Shi, G.; Jin, J. Luteolin inhibits pyrogallol-induced apoptosis through the extracellular signal-regulated kinase signaling pathway. FEBS J. 2012, 279, 1834–1843.
[21]  Mullonkal, C.J.; Toledo-Pereyra, L.H. Akt in ischemia and reperfusion. J. Investig. Surg. 2007, 20, 195–203, doi:10.1080/08941930701366471.
[22]  Matsui, T.; Tao, J.; del Monte, F.; Lee, K.H.; Li, L.; Picard, M.; Force, T.L.; Franke, T.F.; Hajjar, R.J.; Rosenzweig, A. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 2001, 104, 330–335.
[23]  Li, C.; Tian, J.; Li, G.; Jiang, W.; Xing, Y.; Hou, J.; Zhu, H.; Xu, H.; Zhang, G.; Liu, Z.; et al. Asperosaponin VI protects cardiac myocytes from hypoxia-induced apoptosis via activation of the PI3K/Akt and CREB pathways. Eur. J. Pharmacol. 2010, 649, 100–107, doi:10.1016/j.ejphar.2010.08.060.
[24]  Fang, F.; Li, D.; Pan, H.; Chen, D.; Qi, L.; Zhang, R.; Sun, H. Luteolin inhibits apoptosis and improves cardiomyocyte contractile function through the PI3K/Akt pathway in simulated ischemia/reperfusion. Pharmacology 2011, 88, 149–158, doi:10.1159/000330068.
[25]  Sun, D.; Huang, J.; Zhang, Z.; Gao, H.; Li, J.; Shen, M.; Cao, F.; Wang, H. Luteolin limits infarct size and improves cardiac function after myocardium ischemia/reperfusion injury in diabetic rats. PLoS One 2012, 7, e33491.
[26]  Qi, L.; Pan, H.; Li, D.; Fang, F.; Chen, D.; Sun, H. Luteolin improves contractile function and attenuates apoptosis following ischemia-reperfusion in adult rat cardiomyocytes. Eur. J. Pharmacol. 2011, 668, 201–207, doi:10.1016/j.ejphar.2011.06.020.
[27]  Ferrandi, C.; Ballerio, R.; Gaillard, P.; Giachetti, C.; Carboni, S.; Vitte, P.A.; Gotteland, J.P.; Cirillo, R. Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in an aesthetized rats. Br. J. Pharmacol. 2004, 142, 953–960, doi:10.1038/sj.bjp.0705873.
[28]  Strohm, C.; Barancik, T.; Bruhl, M.L.; Kilian, S.A.; Schaper, W. Inhibition of the ER-kinase cascade by PD98059 and UO126 counteracts ischemic preconditioning in pig myocardium. J. Cardiovasc. Pharmacol. 2000, 36, 218–229, doi:10.1097/00005344-200008000-00012.
[29]  Cheng, H.Y.; Hsieh, M.T.; Tsai, F.S.; Wu, C.R.; Chiu, C.S.; Lee, M.M.; Xu, H.X.; Zhao, Z.Z.; Peng, W.H. Neuroprotective effect of luteolin on amyloid beta protein (25-35)-induced toxicity in cultured rat cortical neurons. Phytother. Res. 2010, 24, S102–S108, doi:10.1002/ptr.2940.
[30]  Lee, Y.; Gustafsson, A.B. Role of apoptosis in cardiovascular disease. Apoptosis 2009, 14, 536–548, doi:10.1007/s10495-008-0302-x.
[31]  Maenpaa, C.J.; Shames, B.D.; van Why, S.K.; Johnson, C.P.; Nilakantan, V. Oxidant-mediated apoptosis in proximal tubular epithelial cells following ATP depletion and recovery. Free Radic. Biol. Med. 2008, 44, 518–526, doi:10.1016/j.freeradbiomed.2007.10.040.
[32]  Nam, Y.J.; Mani, K.; Ashton, A.W.; Peng, C.F.; Krishnamurthy, B.; Hayakawa, Y.; Lee, P.; Korsmeyer, S.J.; Kitsis, R.N. Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol. Cell 2004, 15, 901–912, doi:10.1016/j.molcel.2004.08.020.
[33]  Song, J.; Liu, K.; Yi, J.; Zhu, D.; Liu, G.; Liu, B. Luteolin inhibits lysophosphatidylcholine-induced apoptosis in endothelial cells by a calcium/mitocondrion/caspases-dependent pathway. Planta Med. 2010, 76, 433–438, doi:10.1055/s-0029-1186197.
[34]  Negoro, S.; Kunisada, K.; Tone, E.; Funamoto, M.; Oh, H.; Kishimoto, T.; Yamauchi-Takihara, K. Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc. Res. 2000, 47, 797–805, doi:10.1016/S0008-6363(00)00138-3.
[35]  Boengler, K.; Hilfiker-Kleiner, D.; Drexler, H.; Heusch, G.; Schulz, R. The myocardial JAK/STAT pathway: From protection to failure. Pharmacol. Ther. 2008, 120, 172–185, doi:10.1016/j.pharmthera.2008.08.002.
[36]  Wagner, M.; Siddiqui, M.A. Signaling networks regulating cardiac myocyte survival and death. Curr. Opin. Investig. Drugs 2009, 10, 928–937.
[37]  Burley, D.S.; Ferdinandy, P.; Baxter, G.F. Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: Opportunities and obstacles for survival signaling. Br. J. Pharmacol. 2007, 152, 855–869, doi:10.1038/sj.bjp.0707409.
[38]  Han, J.; Kim, N.; Joo, H.; Kim, E.; Earm, Y.E. ATP-sensitive K(+) channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H1545–H1554.
[39]  Hu, C.; Chen, J.; Dandapat, A.; Fujita, Y.; Inoue, N.; Kawase, Y.; Jishage, K.; Suzuki, H.; Li, D.; Hermonat, P.L.; et al. LOX-1 abrogation reduces myocardial ischemia-reperfusion injury in mice. J. Mol. Cell. Cardiol. 2008, 44, 76–83, doi:10.1016/j.yjmcc.2007.10.009.
[40]  Kataoka, K.; Hasegawa, K.; Sawamura, T.; Fujita, M.; Yanazume, T.; Iwai-Kanai, E.; Kawamura, T.; Hirai, T.; Kita, T.; Nohara, R. LOX-1 pathway affects the extent of myocardial ischemia-reperfusion injury. Biochem. Biophys. Res. Commun. 2003, 300, 656–660, doi:10.1016/S0006-291X(02)02905-4.
[41]  Lv, L.; Zhang, Y.; Kong, Q. Luteolin prevents LPS-induced TNF-α expression in cardiac myocytes through inhibiting NF-κB signaling pathway. Inflammation 2011, 34, 620–629, doi:10.1007/s10753-010-9271-7.
[42]  Miura, T.; Liu, Y.; Goto, M.; Tsuchida, A.; Miki, T.; Nakano, A.; Nishino, Y.; Ohnuma, Y.; Shimamoto, K. Mitochondrial ATP-sensitive K+ channels play a role in cardioprotection by Na+-H+ exchange inhibition against ischemia/reperfusion injury. J. Am. Coll. Cardiol. 2001, 37, 957–963.


comments powered by Disqus