The enzyme activity of superoxide dismutase was improved in the pyrogallol autoxidation system by about 27%, after interaction between hydroxypropyl-β-cyclo- dextrin and superoxide dismutase. Fluorescence spectrometry was used to study the interaction between hydroxypropyl-β-cyclodextrin and superoxide dismutase at different temperatures. By doing this, it can be found that these interactions increase fluorescence sensitivity. In the meantime, the synchronous fluorescence intensity revealed the interaction sites to be close to the tryptophan (Trp) and tyrosine (Tyr) residues of superoxide dismutase. Furthermore, molecular docking was applied to explore the binding mode between the ligands and the receptor. This suggested that HP-β-CD interacted with the B ring, G ring and the O ring and revealed that the lysine (Lys) residues enter the nanocavity. It was concluded that the HP-β-CD caused specific conformational changes in SOD by non-covalent modification.
Castronuovo, G.; Niccoli, M. Thermodynamics of inclusioncomplexes of natural and modified cyclodextrins with propranolol in aqueous solution at 298 K. Bioorgan. Med. Chem. 2006, 14, 3883–3887, doi:10.1016/j.bmc.2006.01.052.
[6]
Challa, R.; Ahuja, A.; Ali, J.; Khar, R.K. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech 2005, 6, E329–E357, doi:10.1208/pt060243. 16353992
[7]
Banerjee, A.; Sengupta, B.; Chaudhuri, S.; Basu, K.; Sengupta, P.K. Encapsulation of Prodan in beta-cyclodextrin environments: A critical study via electronic spectroscopy and molecular mechanics. J. Mol. Struct. 2006, 794, 181–184, doi:10.1016/j.molstruc.2006.02.012.
[8]
Chen, W.; Chang, C.-E.; Gilson, M.K. Calculation of cyclodextrin binding affinities: Energy, entropy, and implications for drug design. J. Biophys. 2004, 87, 3035–3049, doi:10.1529/biophysj.104.049494.
[9]
Wintgens, V.; Amiel, C. New 4-amino-N-alkylphthalimides as fluorescence probes for β-cyclodextrin inclusion complexes and hydrophobic microdomains of amphiphilic systems. J. Photochem. Photobiol. A Chem. 2004, 168, 217–226, doi:10.1016/j.jphotochem.2004.06.002.
[10]
Ficarra, R.; Tommasini, S.; Raneri, D. Study of flavonoids/beta-cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation. J. Pharm. Biomed. Anal. 2002, 29, 1005–1014, doi:10.1016/S0731-7085(02)00141-3.
Maritim, A.C.; Sanders, R.A.; Watkins, J.B. Oxidative stress, antioxidants and diabetes: A review. Biochem. Mol. Toxicol. 2003, 17, 24–38, doi:10.1002/jbt.10058.
[13]
Valentine, J.S.; Wertz, D.L.; Lyons, T.J.; Liou, L.L.; Goto, J.J.; Gralla, E.B. The dark side of dioxygen biochemistry. Curr. Opin. Chem. Biol. 1998, 2, 253–262, doi:10.1016/S1367-5931(98)80067-7. 9667937
[14]
Ali, M.B.; Yu, K.W.; Hahn, E.J. Induction in the antioxidative systems and lipid peroxidation in suspension culture roots of Panax ginseng induced by oxygen in bioreactors. Plant Sci. 2005, 169, 833–841, doi:10.1016/j.plantsci.2005.05.029.
[15]
Riley, D.P. Functional mimics of superoxide dismutase enzymes as therapeutic agents. Chem. Rev. 1999, 99, 2573–2588, doi:10.1021/cr980432g. 11749493
[16]
Miller, A.F. In vivo production of active nickel superoxide dismutase from Prochlorococcus marinus MIT9313 is dependent on its cognate peptidase. Curr. Opin. Chem. Biol. 2004, 8, 162–168, doi:10.1016/j.cbpa.2004.02.011.
[17]
Smith, C.D.; Carson, M.; van der Woerd, M. Crystal structure of peroxynitrite-modified bovine CU, ZN superoxide dismutase. Arch. Biochem. Biophys. 1992, 299, 350–355, doi:10.1016/0003-9861(92)90286-6. 1444476
[18]
Zhang, N.N.; He, Y.X.; Li, W.F. Crystal structures of holo and Cu-deficient Cu/Zn-SOD from the silkworm Bombyx mori and the implications in amyotrophic lateral sclerosis. Proteins 2010, 78, 1999–2004. 20310068
[19]
Banci, L.; Benedetto, M.; Bertini, I. The solution structures of reduced monomeric superoxide dismutase, NMR, 36 structures. Biochemistry 1998, 37, 11780–11791, doi:10.1021/bi9803473.
[20]
Wang, J.; Zhang, T.J.; Wang, W.Y. Inclusion complex of volatile oil from Lignum Dalbergiae Odoriferae with hydroxypropyl-β-cyclodextrin. Chin. J. Herb. Med. 2006, 37, 700–703.
[21]
Xu, Y.H.; Li, X.P.; Fu, B.H.; Pu, C.H. Preparation of inclusion complex of hydroxypropyl-β- cyclodextrin and paeonol. Chin. J. Pharm. 2009, 40, 822–828.
[22]
Dai, Y.J.; Zhang, W.W.; Zhu, L.Y. Study on inclusion complex of actarit with hydroxypropyl-β- cyclodextrin. Chin. J. New Drugs 2008, 17, 1695–1699.
[23]
Xu, Y.J.; Zhao, Y.J.; Hu, H. Study on the activity of superoxide dismutase based on the rection of pyrogallol autoxodation. Chin. J. Southwest Univ. Natl. Sci. Ed. 2006, 32, 1207–1212.
[24]
Miao, J.B.; Zhou, T.; Tang, K.W.; Song, L.T. A fluorimeric study of inclusion behavior between β-cyclodextrin derivatives and flurbiprofen. Chin. J. Spectrosc. Lab. 2010, 27, 1532–1536.
[25]
Chaudhuri, S.; Chakraborty, S.; Sengupta, P.K. Encapsulation of serotonin in β-cyclodextrin nano-cavities: Fluorescence spectroscopic and molecular modeling studies. J. Mol. Struct. 2010, 975, 160–165, doi:10.1016/j.molstruc.2010.04.014.
[26]
Guo, X.L.; Yang, Y.; Zhao, G.Y. Study on inclusion interactions of piroxicam with cyclodextrin derivatives. Spectrochim. Acta A 2003, 59, 3379–3386, doi:10.1016/S1386-1425(03)00164-1.