All Title Author
Keywords Abstract

Cytocompatibility and Mechanical Properties of Short Phosphate Glass Fibre Reinforced Polylactic Acid (PLA) Composites: Effect of Coupling Agent Mediated Interface

DOI: 10.3390/jfb3040706

Keywords: phosphate glass, fibre, PLA, composite, degradation, cytocompatibility, mechanical properties, coupling agent

Full-Text   Cite this paper   Add to My Lib


In this study three chemical agents Amino-propyl-triethoxy-silane (APS), sorbitol ended PLA oligomer (SPLA) and Hexamethylene diisocyanate (HDI) were identified to be used as coupling agents to react with the phosphate glass fibre (PGF) reinforcement and the polylactic acid (PLA) polymer matrix of the composite. Composites were prepared with short chopped strand fibres (l = 20 mm, ? = 20 μm) in a random arrangement within PLA matrix. Improved, initial composite flexural strength (~20 MPa) was observed for APS treated fibres, which was suggested to be due to enhanced bonding between the fibres and polymer matrix. Both APS and HDI treated fibres were suggested to be covalently linked with the PLA matrix. The hydrophobicity induced by these coupling agents (HDI, APS) helped to resist hydrolysis of the interface and thus retained their mechanical properties for an extended period of time as compared to non-treated control. Approximately 70% of initial strength and 65% of initial modulus was retained by HDI treated fibre composites in contrast to the control, where only ~50% of strength and modulus was retained after 28 days of immersion in PBS at 37 °C. All coupling agent treated and control composites demonstrated good cytocompatibility which was comparable to the tissue culture polystyrene (TCP) control, supporting the use of these materials as coupling agent’s within medical implant devices.


[1]  T?rm?l?, P. Biodegradable self-reinforced composite materials; Manufacturing structure and mechanical properties. Clin. Mater. 1992, 10, 29–34, doi:10.1016/0267-6605(92)90081-4.
[2]  T?rm?l?, P.; Pohjonen, T.; Rokkanen, P. Bioabsorbable polymers: Materials technology and surgical applications. J. Eng. Med. 1998, 212, 101–111.
[3]  T?rm?l?, P.; Vasenius, J.; Vainionp??, S.; Laiho, J.; Pohjonen, T.; Rokkanen, P. Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: In vitro and in vivo study. J. Biomed. Mater. Res. 1991, 25, 1–22, doi:10.1002/jbm.820250102.
[4]  Enislidis, G.; Lagogiannis, G.; Wittwer, G.; Glaser, C.; Ewers, R. Fixation of zygomatic fractures with a biodegradable copolymer osteosynthesis system: Short- and long-term results. Int. J. Oral Maxillofac. Surg. 2005, 34, 19–26.
[5]  Wambua, P.; Ivens, J.; Verpoest, I. Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sc. Technol. 2003, 63, 1259–1264, doi:10.1016/S0266-3538(03)00096-4.
[6]  Ahmed, I.; Collins, C.A.; Lewis, M.P.; Olsen, I.; Knowles, J.C. Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 2004, 25, 3223–3232.
[7]  Felfel, R.; Ahmed, I.; Parsons, A.; Harper, L.; Rudd, C. Initial mechanical properties of phosphate-glass fibre-reinforced rods for use as resorbable intramedullary nails. J. Mater. Sci. 2012, 47, 4884–4894, doi:10.1007/s10853-012-6355-9.
[8]  Ramsay, S.; Pilliar, R.; Yang, L.; Santerre, J. Calcium polyphosphate/polyvinyl acid-carbonate copolymer based composites for use in biodegradable load-bearing composites for orthopaedic implant fabrication. Key Eng. Mater. 2005, 284-286, 787–790, doi:10.4028/
[9]  Felfel, R.M.; Ahmed, I.; Parsons, A.J.; Haque, P.; Walker, G.S.; Rudd, C.D. Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plate. J. Biomater. Appl. 2012, 26, 765–789, doi:10.1177/0885328210384532.
[10]  Felfel, R.M.; Ahmed, I.; Parsons, A.J.; Walker, G.S.; Rudd, C.D. In vitro degradation, flexural, compressive and shear properties of fully bioresorbable composite rods. J. Mech. Behav. Biomed. Mater. 2011, 4, 1462–1472, doi:10.1016/j.jmbbm.2011.05.016.
[11]  Lin, T.C. Totally absorbable fiber reinforced composite for internal fracture fixation devices. Trans. Soc. Biomater. 1986, 9, 166.
[12]  Andriano, K.P.; Daniels, A.U.; Heller, J. Biocompatibility and mechanical properties of a totally absorbable composite material for orthopaedic fixation devices. J. Appl. Biomater. 1992, 3, 197–206, doi:10.1002/jab.770030306.
[13]  Ahmed, I.; Cronin, P.S.; Neel, E.A.A.; Parsons, A.J.; Knowles, J.C.; Rudd, C.D. Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 89B, 18–27, doi:10.1002/jbm.b.31182.
[14]  Brauer, D.; Rüssel, C.; Vogt, S.; Weisser, J.; Schnabelrauch, M. Degradable phosphate glass fiber reinforced polymer matrices: Mechanical properties and cell response. J. Mater. Sci. Mater. Med. 2008, 19, 121–127, doi:10.1007/s10856-007-3147-x.
[15]  Khan, R.A.; Parsons, A.J.; Jones, I.A.; Walker, G.S.; Rudd, C.D. Surface treatment of phosphate glass fibers using 2-hydroxyethyl methacrylate: Fabrication of poly(caprolactone)-based composites. J. Appl. Polym. Sci. 2009, 111, 246–254.
[16]  Khan, R.A.; Parsons, A.J.; Jones, I.A.; Walker, G.S.; Rudd, C.D. Preparation and characterization of phosphate glass fibers and fabrication of poly(caprolactone) matrix resorbable composites. J. Reinf. Plast. Compos. 2010, 29, 1838–1850.
[17]  Kobayashi, H.S.; Brauer, D.S.; Rüssel, C. Mechanical properties of a degradable phosphate glass fibre reinforced polymer composite for internal fracture fixation. Mater. Sci. Eng. C 2010, 30, 1003–1007, doi:10.1016/j.msec.2010.04.017.
[18]  Ahmed, I.; Parsons, A.J.; Palmer, G.; Knowles, J.C.; Walker, G.S.; Rudd, C.D. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomater. 2008, 4, 1307–1314.
[19]  Parsons, A.J.; Ahmed, I.; Haque, P.; Fitzpatrick, B.; Niazi, M.I.K.; Walker, G.S.; Rudd, C.D. Phosphate glass fibre composites for bone repair. J. Bionic Eng. 2009, 6, 318–323, doi:10.1016/S1672-6529(08)60132-8.
[20]  Haque, P.; Barker, I.A.; Parsons, A.; Thurecht, K.J.; Ahmed, I.; Walker, G.S.; Rudd, C.D.; Irvine, D.J. Influence of compatibilizing agent molecular structure on the mechanical properties of phosphate glass fiber-reinforced PLA composites. J. Polym. Sci. A Polym. Chem. 2010, 48, 3082–3094.
[21]  Haque, P.; Parsons, A.J.; Barker, I.A.; Ahmed, I.; Irvine, D.J.; Walker, G.S.; Rudd, C.D. Interfacial properties of phosphate glass fibres/PLA composites: Effect of the end functionalities of oligomeric PLA coupling agents. Compos. Sci. Technol. 2010, 70, 1854–1860.
[22]  Dupraz, A.M.P.; Wijn, J.R.d.; Meer, S.; Groot, K. Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites. J. Biomed. Mater. Res. 1996, 30, 231–238.
[23]  Andriano, K.P.; Daniels, A.U.; Heller, J. Effectiveness of silane treatment on absorbable microfibers. J. Appl. Biomater. 1992, 3, 191–195, doi:10.1002/jab.770030305.
[24]  Dibenedetto, A.T.; Lex, P.J. Evaluation of surface treatments for glass fibers in composite materials. Polym. Eng. Sci. 1989, 29, 543–555, doi:10.1002/pen.760290809.
[25]  Park, S.-J.; Jin, J.-S. Effect of silane coupling agent on mechanical interfacial properties of glass fiber-reinforced unsaturated polyester composites. J. Polym. Sci. B Polym. Phys. 2003, 41, 55–62, doi:10.1002/polb.10359.
[26]  DiBenedetto, A.T. Tailoring of interfaces in glass fiber reinforced polymer composites: A review. Mater. Sci. Eng. A 2001, 302, 74–82, doi:10.1016/S0921-5093(00)01357-5.
[27]  Yazdani, H.; Morshedian, J.; Khonakdar, H.A. Effects of silane coupling agent and maleic anhydride-grafted polypropylene on the morphology and viscoelastic properties of polypropylene-mica composites. Polym. Compos. 2006, 27, 491–496, doi:10.1002/pc.20217.
[28]  Haque, P. Oligomeric PLA Coupling Agents For Phosphate Glass Fibres/PLA Composites; The university of Nottingham: Nottingham, UK, 2011.
[29]  Nowatzki, P.J.; Tirrell, D.A. Physical properties of artificial extracellular matrix protein films prepared by isocyanate crosslinking. Biomaterials 2004, 25, 1261–1267, doi:10.1016/S0142-9612(03)00635-5.
[30]  Dong, G.-C.; Sun, J.-S.; Yao, C.-H.; Jiang, G.J.; Huang, C.-W.; Lin, F.-H. A study on grafting and characterization of HMDI-modified calcium hydrogenphosphate. Biomaterials 2001, 22, 3179–3189, doi:10.1016/S0142-9612(01)00070-9.
[31]  Sun, J.-S.; Dong, G.-C.; Lin, C.-Y.; Sheu, S.-Y.; Lin, F.-H.; Chen, L.-T.; Chang, W.H.-S.; Wang, Y.-J. The effect of Gu-Sui-Bu (Drynaria fortunei J. Sm) immobilized modified calcium hydrogenphosphate on bone cell activities. Biomaterials 2003, 24, 873–882, doi:10.1016/S0142-9612(02)00372-1.
[32]  Liu, A.; Hong, Z.; Zhuang, X.; Chen, X.; Cui, Y.; Liu, Y.; Jing, X. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(l-lactide) composites. Acta Biomater. 2008, 4, 1005–1015, doi:10.1016/j.actbio.2008.02.013.
[33]  Liu, Q.; de Wijn, J.R.; van Blitterswijk, C.A. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix. J. Biomed. Mater. Res. 1998, 40, 490–497, doi:10.1002/(SICI)1097-4636(19980605)40:3<490::AID-JBM20>3.0.CO;2-M.
[34]  Khan, R.A.; Khan, M.A.; Sultana, S.; Nuruzzaman, K.M.; Shubhra, Q.T.H.; Noor, F.G. Mechanical, degradation, and interfacial properties of synthetic degradable fiber reinforced polypropylene composites. J. Reinf. Plast. Compos. 2010, 29, 466–476.
[35]  Khan, R.A.; Parsons, A.J.; Jones, I.A.; Walker, G.S.; Rudd, C.D. Effectiveness of 3-aminopropyl-triethoxy-silane as a coupling agent for phosphate glass fiber-reinforced poly(caprolactone)-based composites for fracture fixation devices. J. Thermoplast. Compos. Mater. 2011, 24, 517–534, doi:10.1177/0892705710391622.
[36]  Jiang, G.; Evans, M.E.; Jones, I.A.; Rudd, C.D.; Scotchford, C.A.; Walker, G.S. Preparation of poly(ε-caprolactone)/continuous bioglass fibre composite using monomer transfer moulding for bone implant. Biomaterials 2005, 26, 2281–2288.
[37]  Hasan, M.S. Investigation of Coupling Agents Mediated Interfacial Integrity Improvements for Phosphate Glass Fibre Reinforced Composite for Bone Repair Applications Research. PhD Diesseration, University of Nottingham, Nottingham, UK, 2012.
[38]  Siparsky, G.L.; Voorhees, K.J.; Miao, F. Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: autocatalysis. J. Polym. Environ. 1998, 6, 31–41, doi:10.1023/A:1022826528673.
[39]  Sánchez-Vaquero, V. Characterization and cytocompatibility of hybrid aminosilane-agarose hydrogel scaffolds. Biointerphases 2010, 5, 23, doi:10.1116/1.3388182.
[40]  Dong, G-C.; Lin, F-H.; Sun, J-S.; Yao, C-H.; Jiang, G.; Huang, C-W. Biodegradability and cytocompatibility evaluation of surface modified calcium hydrogenphosphate. J. Med. Biol. Eng. 2001, 21, 249–256.
[41]  Lian, J.B.; Stein, G.S. Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit. Rev. Oral Biol. Med. 1992, 3, 269–305.
[42]  Kim, H.-W.; Lee, H.-H.; Chun, G.-S. Bioactivity and osteoblast responses of novel biomedical nanocomposites of bioactive glass nanofiber filled poly(lactic acid). J. Biomed. Mater. Research A 2008, 85A, 651–663, doi:10.1002/jbm.a.31339.
[43]  Navarro, M.; Engel, E.; Planell, J.A.; Amaral, I.; Barbosa, M.; Ginebra, M.P. Surface characterization and cell response of a PLA/CaP glass biodegradable composite material. J. Biomed. Mater. Res. A 2008, 85A, 477–486, doi:10.1002/jbm.a.31546.
[44]  Ignatius, A.A.; Claes, L.E. In vitro biocompatibility of bioresorbable polymers: Poly(L,DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials 1996, 17, 831–839, doi:10.1016/0142-9612(96)81421-9.
[45]  Spenlehauer, G.; Vert, M.; Benoit, J.P.; Boddaert, A. In vitro and in vivo degradation of poly(D,L lactide/glycolide) type microspheres made by solvent evaporation method. Biomaterials 1989, 10, 557–563, doi:10.1016/0142-9612(89)90063-X.
[46]  Daniels, A.U.; Chang, M.K.O.; Andriano, K.P.; Heller, J. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J. Appl. Biomater. 1990, 1, 57–78.
[47]  GraphPad Software, version 3.02, GraphPad Software Inc. San Diego, CA, USA, 1992.


comments powered by Disqus