All Title Author
Keywords Abstract

Micromachines  2012 

Azimuthally Varying Guided Mode Resonance Filters

DOI: 10.3390/mi3010180

Keywords: subwavelength gratings, resonant structures, spatially varying structures, guided waves, leaky modes

Full-Text   Cite this paper   Add to My Lib

Abstract:

New and novel sensing schemes require optical functions with unconventional spatial light distributions, as well as complex spectral functionality. Micro-optical elements have shown some flexibility in their ability to spatially encode phase information using surface relief dielectrics. In this paper, we present a novel optical component that exploits the properties of optically resonant structures to make an azimuthally spatially varying spectral filter. The dispersive properties are quite unique with an angular resonance shift of 28 Deg/nm. This device is fabricated using techniques that are compatible with standard micro-electronic fabrication technologies.

References

[1]  Duplain, G.; Verly, P.G.; Dobrowolski, J.A.; Waldorf, A.; Bussiére, S. Graded-reflectance mirrors for beam quality control in laser resonators. Appl. Opt. 1993, 32, 1145–1153, doi:10.1364/AO.32.001145.
[2]  Morin, M. Graded reflectivity mirror unstablelaser resonators. Opt. Quantum Electron. 1997, 29, 819–866, doi:10.1023/A:1018569331235.
[3]  Lavigne, P.; McCarthy, N.; Demers, J.-G. Design and characterization of complementary gaussian reflectivity mirrors. Appl. Opt. 1985, 24, 2581–2586, doi:10.1364/AO.24.002581.
[4]  Piegari, A. Coatings with graded-reflectance profile: Conventional and unconventional characteristics. Appl. Opt. 1996, 35, 5509–5519, doi:10.1364/AO.35.005509.
[5]  Roth, Z.A.; Poutous, M.K.; Srinivasan, P.; Pung, A.; Johnson, E.G. Azimuthally varying graded reflectivity mirrors. In OSA Technical Digest (CD); Optical Society of America: Washington, DC, USA, 2010; p. FWS5.
[6]  Srinivasan, P.; Poutous, M.K.; Roth, Z.A.; Yilmaz, Y.O.; Rumpf, R.C.; Johnson, E.G. Spatial and spectral beam shaping with space-variant guided mode resonance filters. Opt. Express 2009, 17, 20365–20375.
[7]  Dobbs, D.W.; Gershkovich, I.; Cunningham, B.T. Fabrication of a graded-wavelength guided-mode resonance filter photonic crystal. Appl. Phys. Lett. 2006, 89, 123113:1–123113:3.
[8]  Wang, S.S.; Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 1993, 32, 2606–2613, doi:10.1364/AO.32.002606.
[9]  Brückner, F.; Kroker, S.; Friedrich, D.; Kley, E.-B.; Tünnermann, A. Widely tunable monolithic narrowband grating filter for near-infrared radiation. Opt. Lett. 2011, 36, 436–438.
[10]  Chang, A.S.P.; Morton, K.J.; Hua, T.; Murphy, P.F.; Wei, W.; Chou, S.Y. Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography. IEEE Photonics Technol. Lett. 2007, 19, 1457–1459, doi:10.1109/LPT.2007.903719.
[11]  Magnusson, R.; Ding, Y. MEMS tunable resonant leaky mode filters. IEEE Photonics Technol. Lett. 2006, 18, 1479–1481, doi:10.1109/LPT.2006.877578.
[12]  Song, H.Y.; Kim, S.; Magnusson, R. Tunable guided-mode resonances in coupled gratings. Opt. Express 2009, 17, 23544–23555.
[13]  Szeghalmi, A.; Helgert, M.; Brunner, R.; Heyroth, F.; G?sele, U.; Knez, M. Tunable guided-mode resonance grating filter. Adv. Funct. Mater. 2010, 20, 2053–2062.
[14]  Szeghalmi, A.; Kley, E.B.; Knez, M. Theoretical and experimental analysis of the sensitivity of guided Mode resonance sensors. J. Phys. Chem. C 2010, 114, 21150–21157.
[15]  Moharam, M.G.; Gaylord, T.K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 1981, 71, 811–818, doi:10.1364/JOSA.71.000811.
[16]  Gerdes, J.; Pregla, R. Beam-propagation algorithm based on the method of lines. J. Opt. Soc. Am. B 1991, 8, 389–394, doi:10.1364/JOSAB.8.000389.
[17]  Srinivasan, P.; Roth, Z.A.; Poutous, M.K.; Johnson, E.G. Novel method for the fabrication of spatially variant structures. J. Micro/Nanolith. MEMS MOEMS 2009, 8, 013010:1–013010:8.
[18]  Poutous, M.K.; Roth, Z.; Buhl, K.; Pung, A.; Rumpf, R.C.; Johnson, E.G. Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components. In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II; Suleski, T.J., Schoenfeld, W.V., Wang, J.J., Eds.; SPIE: San Jose, CA, USA, 2009; p. 72050Y.
[19]  Sung, J.; Hockel, H.; Johnson, E.G. Analog micro-optics fabrication by use of a two-dimensional binaryphase-grating mask. Opt. Lett. 2005, 30, 150–152, doi:10.1364/OL.30.000150.
[20]  Fattal, D.; Li, J.; Peng, Z.; Fiorentino, M.; Beausoleil, R.G. Flat dielectric grating reflectors with focusing abilities. Nat. Photonics 2010, 4, 466–470, doi:10.1038/nphoton.2010.116.
[21]  Lu, F.; Sedgwick, F.G.; Karagodsky, V.; Chase, C.; Chang-Hasnain, C.J. Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt. Express 2010, 18, 12606–12614.
[22]  Poutous, M.K.; Pung, A.J.; Srinivasan, P.; Roth, Z.A.; Johnson, E.G. Polarization selective, graded-reflectivity resonance filter, using a space-varying guided-mode resonance structure. Opt. Express 2010, 18, 27764–27776.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal