Marine dinoflagellates are the single most important group of algae that produce toxins, which have a global impact on human activities. The toxins are chemically diverse, and include macrolides, cyclic polyethers, spirolides and purine alkaloids. Whereas there is a multitude of studies describing the pharmacology of these toxins, there is limited or no knowledge regarding the biochemistry and molecular genetics involved in their biosynthesis. Recently, however, exciting advances have been made. Expressed sequence tag sequencing studies have revealed important insights into the transcriptomes of dinoflagellates, whereas other studies have implicated polyketide synthase genes in the biosynthesis of cyclic polyether toxins, and the molecular genetic basis for the biosynthesis of paralytic shellfish toxins has been elucidated in cyanobacteria. This review summarises the recent progress that has been made regarding the unusual genomes of dinoflagellates, the biosynthesis and molecular genetics of dinoflagellate toxins. In addition, the evolution of these metabolic pathways will be discussed, and an outlook for future research and possible applications is provided.
References
[1]
Taylor, FJR. The Biology of Dinoflagellates; Blackwell Scientific Publications: Oxford, UK, 1987; p. 785.
[2]
Hallegraeff, GM. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99.
[3]
Anderson, DM. Red tides. Sci Am 1994, 271, 52–58.
[4]
Hallegraeff, GM. Harmful algal blooms: A global overview. In Manual on Harmful Marine Microalgae; Hallegraeff, GM, Anderson, DM, Cembella, AD, Eds.; UNESCO: Paris, France, 1995; pp. 1–22.
[5]
Wang, DZ. Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs 2008, 6, 349–731.
[6]
Rein, KS; Borrone, J. Polyketides from dinoflagellates: Origins, pharmacology and biosynthesis. Comp Biochem Physiol B Biochem Mol Biol 1999, 124, 117–131.
[7]
Satake, M; Murata, M; Yasumoto, T; Fujita, T; Naoki, H. Amphidinol, a polyhydroxypolyene antifungal agent with an unprecedented structure, from a marine dinoflagellate Amphidinium klebsii. J Am Chem Soc 1991, 113, 9859–9861.
[8]
Berry, JP; Reece, KS; Rein, KS; Baden, DG; Haas, LW; Ribeiro, WL; Shields, JD; Snyder, RV; Vogelbein, WK; Gawley, RE. Are Pfiesteria species toxicogenic? Evidence against production of ichthyotoxins by Pfiesteria shumwayae. Proc Natl Acad Sci USA 2002, 99, 10970–10975.
[9]
Steidinger, KA; Burkholder, JM; Glasgow, HB, Jr; Hobbs, CW; Garrett, JK; Truby, EW; Noga, EJ; Smith, SA. Pfiesteria piscicida gen. et sp. nov. (Pfiesteriaceae fam. nov.), a new toxic dinoflagellate with a complex life cycle and behavior. J Phycol 1996, 32, 157–164.
[10]
Moeller, PD; Beauchesne, KR; Huncik, KM; Davis, WC; Christopher, SJ; Riggs-Gelasco, P; Gelasco, AK. Metal complexes and free radical toxins produced by Pfiesteria piscicida. Environ Sci Technol 2007, 41, 1166–1172.
[11]
Rein, KS; Snyder, RV. The biosynthesis of polyketide metabolites by dinoflagellates. Adv Appl Microbiol 2006, 59, 93–125.
Robinson, JA. Polyketide synthase complexes: their structure and function in antibiotic biosynthesis. Philos Trans R Soc Lond B Biol Sci 1991, 332, 107–114.
[15]
Moffitt, MC; Neilan, BA. Evolutionary affiliations within the superfamily of ketosynthases reflect complex pathway associations. J Mol Evol 2003, 56, 446–457.
[16]
Silakowski, B; Nordsiek, G; Kunze, B; Blocker, H; Muller, R. Novel features in a combined polyketide synthase/non-ribosomal peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga15. Chem Biol 2001, 8, 59–69.
[17]
Van Lanen, SG; Shen, B. Advances in polyketide synthase structure and function. Curr Opin Drug Discov Devel 2008, 11, 186–195.
Tengs, T; Dahlberg, OJ; Shalchian-Tabrizi, K; Klaveness, D; Rudi, K; Delwiche, CF; Jakobsen, KS. Phylogenetic analyses indicate that the 19′Hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol 2000, 17, 718–729.
[25]
Shalchian-Tabrizi, K; Minge, MA; Cavalier-Smith, T; Nedreklepp, J; Klaveness, D; Jakobsen, KS. Combined Hsp90 and rRNA sequence phylogeny supports multiple replacements of dinoflagellate plastids. J Eukaryot Microbiol 2006, 53, 217–224.
[26]
Koike, K; Sekiguchi, H; Kobiyama, A; Takishita, K; Kawachi, M; Ogata, T. A novel type of kleptoplastidy in Dinophysis (Dinophyceae): presence of haptophyte-type plastid in Dinophysis mitra. Protist 2005, 156, 225–237.
[27]
Minnhagen, S; Janson, S. Genetic analyses of Dinophysis spp. support kleptoplastidy. FEMS Microbiol Ecol 2006, 57, 47–54.
[28]
Burki, F; Inagaki, Y; Br?te, J; Archibald, JM; Keeling, PJ; Cavalier-Smith, T; Sakaguchi, M; Hashimoto, T; Horak, A; Kumar, S; Klaveness, D; Jakobsen, KJ; Pawlowski, J; Shalchian-Tabrizi, K. Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, Telonemia and Centroheliozoa, are related to photosynthetic chromalveolates. Genome Biol Evol 2009, 231–238.
[29]
Burki, F; Shalchian-Tabrizi, K; Minge, M; Skjaeveland, A; Nikolaev, SI; Jakobsen, KS; Pawlowski, J. Phylogenomics reshuffles the eukaryotic supergroups. PLoS One 2007, 2, e790.
[30]
Archibald, JM. Genomics: Green evolution, green revolution. Science 2009, 324, 191–192.
[31]
Hampla, V; Huga, L; Leigha, JW; Dacksd, JB; Lang, F; Simpson, A; Rogera, AJ. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA 2009, 106, 3859–3864.
[32]
Shalchian-Tabrizi, K; Skanseng, M; Ronquist, F; Klaveness, D; Bachvaroff, TR; Delwiche, CF; Botnen, A; Tengs, T; Jakobsen, KS. Heterotachy processes in rhodophyte-derived secondhand plastid genes: Implications for addressing the origin and evolution of dinoflagellate plastids. Mol Biol Evol 2006, 23, 1504–1515.
[33]
Patron, NJ; Waller, RF; Keeling, PJ. A tertiary plastid uses genes from two endosymbionts. J Mol Biol 2006, 357, 1373–1382.
[34]
Nosenko, T; Lidie, KL; Van Dolah, FM; Lindquist, E; Cheng, JF; Bhattacharya, D. Chimeric plastid proteome in the Florida “red tide” dinoflagellate Karenia brevis. Mol Biol Evol 2006, 23, 2026–2038.
[35]
Minge, MA; Shalchian-Tabrizi, K; T?rresen, OK; Takishita, K; Probert, I; Inagaki, Y; Klaveness, D. A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum. BMC Evol Biol 2010. in press.
[36]
Keeling, PJ; Palmer, JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 2008, 9, 605–618.
[37]
Koumandou, VL; Nisbet, RE; Barbrook, AC; Howe, CJ. Dinoflagellate chloroplasts--where have all the genes gone. Trends Genet 2004, 20, 261–267.
[38]
Dodge, JD. The Dinophyceae: The Chromosomes of the Algae; St Martins Press: New York, NY, USA, 1966; pp. 96–115.
[39]
Veldhuis, MJW; Cucci, TL; Sieracki, ME. Cellular DNA content of marine phytoplankton using two new fluorochromes: Taxonomic and ecological implications. J Phycol 1997, 33, 527–541.
[40]
Rae, PM. Hydroxymethyluracil in eukaryote DNA: a natural feature of the pyrrophyta (dinoflagellates). Science 1976, 194, 1062–1064.
[41]
Rae, PMM; Steele, RE. Modified Bases in DNAs of Unicellular Eukaryotes-Examination of Distributions and Possible Roles, with Emphasis on Hydroxy-Methyl-Uracil in Dinoflagellates. Biosystems 1978, 10, 37–53.
[42]
Davies, W; Jakobsen, KS; Nordby, O. Characterization of DNA from the Dinoflagellate Woloszynskia-Bostoniensis. J Protozool 1988, 35, 418–422.
Bachvaroff, TR; Place, AR. From stop to start: tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate Amphidinium carterae. PLoS One 2008, 3, e2929.
[47]
Zhang, H; Hou, Y; Miranda, L; Campbell, DA; Sturm, NR; Gaasterland, T; Lin, S. Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci USA 2007, 104, 4618–4623.
[48]
Lidie, KB; van Dolah, FM. Spliced leader RNA-mediated trans-splicing in a dinoflagellate, Karenia brevis. J Eukaryot Microbiol 2007, 54, 427–435.
[49]
Douris, V; Telford, MJ; Averof, M. Evidence for multiple independent origins of trans-splicing in Metazoa. Mol Biol Evol 2009, doi:10.1093/molbev/msp286.
[50]
Zhang, H; Lin, S. Retrieval of missing spliced leader in dinoflagellates. PLoS One 2009, 4, e4129.
[51]
Slamovits, CH; Keeling, PJ. Widespread recycling of processed cDNAs in dinoflagellates. Curr Biol 2008, 18, R550–552.
[52]
Hou, Y; Lin, S. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes. PLoS One 2009, 4, e6978.
[53]
Lin, S; Zhang, H; Gray, MW. RNA editing in dinoflagellates and its implications for the evolutionary history of the editing machinery. In RNA and DNA Editing: Molecular Mechanisms and Their Integration into Biological Systems; Smith, HC, Ed.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2008; pp. 280–309.
[54]
Lin, SJ; Zhang, HA; Spencer, DF; Norman, JE; Gray, MW. Widespread and extensive editing of mitochondrial mRNAs in dinoflagellates. J Mol Biol 2002, 320, 727–739.
[55]
Ting, JY; Brown, AF. Ciguatera poisoning: a global issue with common management problems. Eur J Emerg Med 2001, 8, 295–300.
Satake, M; Murata, M; Yasumoto, T. The structure of CTX3C, a ciguatoxin congener isolated from cultured Gambierdiscus toxicus. Tetrahedron Lett 1993, 34, 1975–1978.
[58]
Gillespie, NC; Lewis, RJ; Pearn, JH; Bourke, AT; Holmes, MJ; Bourke, J. Ciguatera in Australia. Occurrence, clinicalfeatures, pathophysiology and management. Med J Aust 1986, 145, 584–590.
[59]
Zheng, WJ; DeMattei, JA; Wu, JP; Duan, JJW; Cook, LR; Oinuma, H; Kishi, Y. Complete relative stereochemistry of maitotoxin. J Am Chem Soc 1996, 118, 7946–7968.
[60]
Gusovsky, F; Daly, JW. Maitotoxin: a unique pharmacological tool for research on calcium-dependent mechanisms. Biochem Pharmacol 1990, 39, 1633–1639.
[61]
Soergel, DG; Yasumoto, T; Daly, JW; Gusovsky, F. Maitotoxin effects are blocked by SK-and-F-96365, an inhibitor of receptor-mediated calcium entry. Mol Pharmacol 1992, 41, 487–493.
[62]
Takahashi, M; Ohizumi, Y; Yasumoto, T. Maitotoxin, a Ca2+ channel activator candidate. J Biol Chem 1982, 257, 7287–7289.
[63]
Holmes, MJ; Lewis, RJ; Poli, MA; Gillespie, NC. Strain dependent production of ciguatoxin precursors (gambiertoxins) by Gambierdiscus toxicus (Dinophyceae) in culture. Mem Queensl Mus 1994, 34, 447–453.
[64]
Chou, HN; Shimizu, Y. Biosynthesis of brevetoxins. Evidence for the mixed origin of the backbone carbon chain and possible involvement of dicarboxylic acids. J Am Chem Soc 1987, 109, 2184–2185.
[65]
Satake, M. Biosynthesis of the marine polyether toxin, yessotoxin. Symp Chem Nat Prod 2000, 42, 259–264.
van Dolah, MF; Lidie, KB; Monroe, EA; Bhattacharya, D; Campbell, L; Doucette, GJ; Kamykowski, D. The Florida red tide dinoflagellate Karenia brevis: New insights into cellular and molecular processes underlying bloom dynamics. Harmful Algae 2009, 8, 562–572.
[68]
Lin, YY; Risk, M. Isolation and structure of brevetoxin B from the “red tide” dinoflagellate Ptychodiscus brevis (Gymnodinium breve). J Am Chem Soc 1981, 103, 6773–6775.
[69]
Ogino, H; Kumagai, M; Yasumoto, T. Toxicologic evaluation of yessotoxin. Nat Toxins 1997, 5, 255–259.
[70]
Terao, K; Ito, E; Oarada, M; Murata, M; Yasumoto, T. Histopathological studies on experimental marine toxin poisoning--5. The effects in mice of yessotoxin isolated from Patinopecten yessoensis and of a desulfated derivative. Toxicon 1990, 28, 1095–1104.
[71]
Bowden, BF. Yessotoxins-polycyclic ethers from dinoflagellates: Relationships to diarrhetic shellfish toxins. Toxin Rev 2006, 25, 137–157.
[72]
Eiki, K; Satake, M; Koike, K; Ogata, T; Mitsuya, T; Oshima, Y. Confirmation of yessotoxin production by the dinoflagellate Protoceratium reticulatum in Mutsu Bay. Fish Sci 2005, 71, 633–638.
[73]
Draisci, R; Ferretti, E; Palleschi, L; Marchiafava, C; Poletti, R; Milandri, A; Ceredi, A; Pompei, M. High levels of yessotoxin in mussels and presence of yessotoxin and homoyessotoxin in dinoflagellates of the Adriatic Sea. Toxicon 1999, 37, 1187–1193.
[74]
Rhodes, L; McNabb, P; de Salas, M; Briggs, L; Beuzenberg, V; Gladstone, M. Yessotoxin production by Gonyaulax spinifera. Harmful Algae 2006, 5, 148–155.
[75]
Chou, HN; Shimizu, Y; Duyne, GV; Clardy, J. Isolation and structures of two new polycyclic ethers from Gymnodinium breve Davis (Ptychodiscus brevis). Tetrahedron Lett 1985, 26, 2865–2868.
[76]
Golik, J; James, JC; Nakanishi, K; Lin, YY. The structure of brevetoxin C. Tetrahedron Lett 1982, 23, 2535–2538.
[77]
Lee, MS; Qin, GW; Nakanishi, K; Zagorski, MG. Biosynthesis Studies of Brevetoxins, Potent Neurotoxins Produced by the Dinoflagellate Gymnodinium breve. J Am Chem Soc 1989, 111, 6234–6241.
[78]
Nakanishi, K. The chemistry of brevetoxins - a review. Toxicon 1985, 23, 473–479.
[79]
Xiang, L; Kalaitzis, JA; Moore, BS. EncM, a versatile enterocin biosynthetic enzyme involved in Favorskii oxidative rearrangement, aldol condensation, and heterocycle-forming reactions. Proc Natl Acad Sci USA 2004, 101, 15609–5614.
[80]
Julien, B; Tian, ZQ; Reid, R; Reeves, CD. Analysis of the ambruticin and jerangolid gene clusters of Sorangium cellulosum reveals unusual mechanisms of polyketide biosynthesis. Chem Biol 2006, 13, 1277–1286.
[81]
Tsuda, M; Kubota, T; Sakuma, Y; Kobayashi, J. Biosynthetic study of amphidinolide B. Chem Pharm Bull 2001, 49, 1366–1367.
[82]
Murakami, M; Okita, Y; Matsuda, H; Okino, T; Yamaguchi, K. From the dinoflagellate Alexandrium hiranoi. Phytochemistry 1998, 48, 85–88.
[83]
MacKinnon, SL; Cembella, AD; Burton, IW; Lewis, N; LeBlanc, P; Walter, JA. Biosynthesis of 13-desmethyl spirolide C by the dinoflagellate Alexandrium ostenfeldii. J Org Chem 2006, 71, 8724–8731.
[84]
Satake, M; Bourdelais, AJ; Van Wagoner, RM; Baden, DG; Wright, JL. Brevisamide: an unprecedented monocyclic ether alkaloid from the dinoflagellate Karenia brevis that provides a potential model for ladder-frame initiation. Org Lett 2008, 10, 3465–3468.
Leadlay, PF; Staunton, J; Oliynyk, M; Bisang, C; Cortes, J; Frost, E; Hughes-Thomas, ZA; Jones, MA; Kendrew, SG; Lester, JB; Long, PF; McArthur, HA; McCormick, EL; Oliynyk, Z; Stark, CB; Wilkinson, CJ. Engineering of complex polyketide biosynthesis--insights from sequencing of the monensin biosynthetic gene cluster. J Ind Microbiol Biotechnol 2001, 27, 360–367.
[87]
Vilotijevic, I; Jamison, TF. Synthesis of marine polycyclic polyethers via epoxide-opening cascades. Mar Drugs 2010, 8, 763–809.
[88]
Lopez-Legentil, S; Song, B; Deture, M; Baden, DG. Characterization and Localization of a Hybrid Non-ribosomal Peptide Synthetase and Polyketide Synthase Gene from the Toxic Dinoflagellate Karenia brevis. Mar Biotechnol (NY) 2010, 12, 32–41.
[89]
Shimizu, Y. Microalgal metabolites. Curr Opin Microbiol 2003, 6, 236–243.
[90]
Bialojan, C; Takai, A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases - specificity and kinetics. Biochem J 1988, 256, 283–290.
[91]
Norte, M; Padilla, A; Fernandez, JJ. Studies on the biosynthesis of the polyether marine toxin dinophysistoxin-1 (DTX-1). Tetrahedron Lett 1994, 35, 1441–1444.
[92]
Macpherson, GR; Burton, IW; LeBlanc, P; Walter, JA; Wright, JL. Studies of the biosynthesis of DTX-5a and DTX-5b by the dinoflagellate Prorocentrum maculosum: regiospecificity of the putative Baeyer-Villigerase and insertion of a single amino acid in a polyketide chain. J Org Chem 2003, 68, 1659–1664.
[93]
Daranas, AH; Fernandez, JJ; Norte, M; Gavin, JA; Suarez-Gomez, B; Souto, ML. Biosynthetic studies of the DSP toxin skeleton. Chem Rec 2004, 4, 1–9.
[94]
Needham, J; Hu, T; McLachlan, JL; Walter, JA; Wright, JLC. Biosynthetic studies of the DSP toxin DTX-4 and an okadaic acid diol ester. J Chem Soc, Chem Commun 1995, 16, 1623–1624.
[95]
Wright, JLC; Hu, T; McLachlan, JL; Needham, J; Walter, JA. Biosynthesis of DTX-4: Confirmation of a Polyketide Pathway, Proof of a Baeyer-Villiger Oxidation Step, and Evidence for an Unusual Carbon Deletion Process. J Am Chem Soc 1996, 118, 8757–8758.
[96]
Doekel, S; Marahiel, MA. Biosynthesis of natural products on modular peptide synthetases. Metab Eng 2001, 3, 64–77.
[97]
Murata, M; Izumikawa, M; Tachibana, K; Fujita, T; Naoki, H. Labelling pattern of okadaic acid from 18O2 and [18O2]acetate elucidated by collision-induced dissociation tandem mass spectrometry. J Am Chem Soc 1998, 120, 147–151.
[98]
Izumikawa, M; Murata, M; Tachibana, K; Fujita, T; Naoki, H. 18O-Labelling pattern of okadaic acid from H218O in dinoflagellate Prorocentrum lima elucidated by tandem mass spectrometry. Eur J Biochem 2000, 267, 5179–5183.
[99]
Oliynyk, M; Stark, CB; Bhatt, A; Jones, MA; Hughes-Thomas, ZA; Wilkinson, C; Oliynyk, Z; Demydchuk, Y; Staunton, J; Leadlay, PF. Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Mol Microbiol 2003, 49, 1179–1190.
[100]
Kobayashi, J; Tsuda, M. Amphidinolides, bioactive macrolides from symbiotic marine dinoflagellates. Nat Prod Rep 2004, 21, 77–93.
[101]
Sato, M; Shimbo, K; Tsuda, M; Kobayashi, J. Biosynthetic studies of amphidinolides G and H: unusual labeling patterns in feeding experiments with C-13-labeled acetates. Tetrahedron Lett 2000, 41, 503–506.
[102]
Cembella, AD; Lewis, NI; Quilliam, MA. The marine dinoflagellate Alexandrium ostenfeldii (Dinophyceae) as the causative organism of spirolide shellfish toxins. Phycologia 2000, 39, 67–74.
[103]
Ciminiello, P; Catalanotti, B; Dell’Aversano, C; Fattorusso, C; Fattorusso, E; Forino, M; Grauso, L; Leo, A; Tartaglione, L. Full relative stereochemistry assignment and conformational analysis of 13,19-didesmethyl spirolide C via NMR- and molecular modeling-based techniques. A step towards understanding spirolide’s mechanism of action. Org Biomol Chem 2009, 7, 3674–3681.
[104]
Guéret, SM; Brimble, MA. The Spirolide Family of Shellfish Toxins: Isolation, Structure, Biological Activity and Synthesis. Mar Drugs 2010. submitted.
[105]
Kao, CY; Levinson, SR. Tetrodotoxin, Saxitoxin, and the Molecular Biology of the Sodium Channel; The New York Academy of Science: New York, NY, USA, 1986; Volume 479, pp. 1–445.
[106]
Wang, J; Salata, JJ; Bennett, PB. Saxitoxin is a gating modifier of HERG K+ channels. J Gen Physiol 2003, 121, 583–598.
Shimizu, Y; Norte, M; Hori, A; Genenah, A; Kobayashi, M. Biosynthesis of saxitoxin analogues: The unexpected pathway. J Am Chem Soc 1984, 106, 6433–6434.
[109]
Shimizu, Y. Microalgal metabolites. Chem Rev 1993, 93, 1685–1698.
[110]
Gupta, S; Norte, M; Shimizu, Y. Biosynthesis of saxitoxin analogues: the origin and introduction mechanism of the side-chain carbon. J Chem Soc Chem Commun 1989, 1421–1424.
[111]
Shimizu, Y. Microalgal metabolites: a new perspective. Annu Rev Microbiol 1996, 50, 431–465.
[112]
Kellmann, R; Neilan, BA. Biochemical characterisation of paralytic shellfish toxin biosynthesis in vitro. J Phycol 2007, 43, 497–508.
[113]
Kellmann, R; Mihali, TK; Jeon, YJ; Pickford, R; Pomati, F; Neilan, BA. Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 2008, 74, 4044–4053.
[114]
Mahmood, NA; Carmichael, WW. Paralytic shellfish poisons produced by the freshwater cyanobacterium Aphanizomenon flos-aquae NH-5. Toxicon 1986, 24, 175–186.
[115]
Kubota, T; Iinuma, Y; Kobayashi, J. Cloning of polyketide synthase genes from amphidinolide-producing dinoflagellate Amphidinium sp. Biol Pharm Bull 2006, 29, 1314–1318.
[116]
Snyder, RV; Gibbs, PD; Palacios, A; Abiy, L; Dickey, R; Lopez, JV; Rein, KS. Polyketide synthase genes from marine dinoflagellates. Mar Biotechnol (NY) 2003, 5, 1–12.
[117]
Nakamura, H; Asari, T; Fujimaki, K; Maruyama, K; Murai, A; Ohizumi, Y; Kan, Y. Zooxanthellatoxin-B, vasoconstrictive congener of zooxanthellatoxin-a from a symbiotic dinoflagellate Symbiodinium sp. Tetrahedron Lett 1995, 36, 7255–7258.
[118]
Kobayashi, J; Ishibashi, M. Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 1993, 93, 1753–1769.
[119]
Snyder, RV; Guerrero, MA; Sinigalliano, CD; Winshell, J; Perez, R; Lopez, JV; Rein, KS. Localization of polyketide synthase encoding genes to the toxic dinoflagellate Karenia brevis. Phytochemistry 2005, 66, 1767–1780.
[120]
Monroe, EA; Van Dolah, FM. The toxic dinoflagellate Karenia brevis encodes novel type I-like polyketide synthases containing discrete catalytic domains. Protist 2008, 159, 471–482.
[121]
John, U; Beszteri, B; Derelle, E; de Peer, YV; Read, B; Moreau, H; Cembella, A. Novel insights into evolution of protistan polyketide synthases through phylogenomic analysis. Protist 2008, 159, 21–30.
[122]
Stachelhaus, T; Mootz, HD; Marahiel, MA. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 1999, 6, 493–505.
[123]
Perez, R; Liu, L; Lopez, J; An, T; Rein, KS. Diverse bacterial PKS sequences derived from okadaic acid-producing dinoflagellates. Mar Drugs 2008, 6, 164–179.
[124]
de Traubenberg, CR. Interactions between a dinoflagellate and its associated bacterial microflora: Role of bacteria in the toxicity of Prorocentrum lima Ehrenberg (Dodge). Ph.D. Dissertation, University of Nantes, Nantes, France, 1993.
[125]
Zhu, G; LaGier, MJ; Stejskal, F; Millership, JJ; Cai, X; Keithly, JS. Cryptosporidium parvum: the first protist known to encode a putative polyketide synthase. Gene 2002, 298, 79–89.
[126]
Taroncher-Oldenburg, G; Anderson, DM. Identification and characterization of three differentially expressed genes, encoding S-adenosylhomocysteine hydrolase, methionine aminopeptidase, and a histone-like protein, in the toxic dinoflagellate Alexandrium fundyense. Appl Environ Microbiol 2000, 66, 2105–2112.
[127]
Sako, Y; Yoshida, T; Uchida, A; Arakawa, O; Noguchi, T; Ishida, Y. Purification and characterization of a sulfotransferase specific to N-21 of saxitoxin and gonyautoxin 2+3 from the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). J Phycol 2001, 37, 1044–1051.
[128]
Yoshida, T; Sako, Y; Uchida, A; Kakutani, T; Arakawa, O; Noguchi, T; Ishida, Y. Purification and characterization of sulfotransferase specific to O-22 of 11-hydroxy saxitoxin from the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). Fish Sci 2002, 68, 634–642.
[129]
Hackett, JD; Scheetz, TE; Yoon, HS; Soares, MB; Bonaldo, MF; Casavant, TL; Bhattacharya, D. Insights into a dinoflagellate genome through expressed sequence tag analysis. BMC Genomics 2005, 6, 80.
[130]
Taroncher Oldenburg, G; Kulis, DM; Anderson, DM. Toxin variability during the cell cycle of the dinoflagellate Alexandrium fundyense. Limnol Oceanogr 1997, 42, 1178–1188.
[131]
Taroncher-Oldenburg, G; Kulis, DM; Anderson, DM. Coupling of saxitoxin biosynthesis to the G1 phase of the cell cycle in the dinoflagellate Alexandrin fundyense: temperature and nutrient effects. Nat Toxins 1999, 7, 207–219.
[132]
Leighfield, TA; Barbier, M; Van Dolah, FM. Evidence for cAMP-dependent protein kinase in the dinoflagellate, Amphidinium operculatum. Comp Biochem Physiol B Biochem Mol Biol 2002, 133, 317–324.
[133]
Leighfield, TA; Van Dolah, FM. Identification of a cyclic AMP-dependent protein kinase in the dinoflagellate Amphidinium operculatum. J Phycol 2000, 36(suppl), doi:10.1046/j.1529-8817.1999.00001-128.x.
[134]
Salois, P; Morse, D. Characterization and molecular phylogeny of a protein kinase cDNA from the dinoflagellate Gonyaulax (Dinophyceae). J Phycol 1997, 33, 1063–1072.
[135]
Lin, S; Zhang, H. Mitogen-activated protein kinase in Pfiesteria piscicida and its growth rate-related expression. Appl Environ Microbiol 2003, 69, 343–349.
[136]
Yoshida, T; Sako, Y; Fujii, A; Uchida, A; Ishida, Y; Arakawa, O; Noguchi, T. Comparative study on two sulfotransferases involved with sulfation to N-21 of PSP toxins from Gymnodinium catenatum and Alexandrium catenella. VIII International conference on Harmful algae- Abstracts and Posters Classification, Vigo (Spain), 25–29 Jun 1997; Reguera, B, Ed.; Instituto Espanol de Oceanografia, Centro Oceanografico de Vigo, Vigo, Espana: Vigo, Spain, 1997.
[137]
Wang, D; Zhang, S; Hong, HZ. A sulfotransferase specific to N-21 of gonyautoxin 2/3 from crude enzyme extraction of toxic dinoflagellate Alexandrium tamarense CI01. Chin J Oceanol Limnol 2007, 25, 227–234.
[138]
Matsui, M; Homma, H. Biochemistry and molecular biology of drug-metabolizing sulfotransferase. Int J Biochem 1994, 26, 1237–1247.
[139]
Barnes, S; Buchina, ES; King, RJ; McBurnett, T; Taylor, KB. Bile acid sulfotransferase I from rat liver sulfates bile acids and 3-hydroxy steroids: purification, N-terminal amino acid sequence, and kinetic properties. J Lipid Res 1989, 30, 529–540.
[140]
Saidha, T; Schiff, JA. Purification and properties of a phenol sulphotransferase from Euglena using L-tyrosine as substrate. Biochem J 1994, 298(Pt 1), 45–50.
[141]
Uribe, P; Fuentes, D; Valdes, J; Shmaryahu, A; Zuniga, A; Holmes, D; Valenzuela, PD. Preparation and analysis of an expressed sequence tag library from the toxic dinoflagellate Alexandrium catenella. Mar Biotechnol (NY) 2008, 10, 692–700.
[142]
Humpage, AR; Rositano, J; Bretag, AH; Brown, R; Baker, PD; Nicholson, BC; Steffensen, DA. Paralytic shellfish poisons from Australian cyanobacterial blooms. Aust J Mar Freshw Res 1994, 45, 761–771.
[143]
Cembella, AD. Ecophysiology and metabolism of paralytic shellfish toxins in marine microalgae. In Physiological Ecology of Harmful Algal Blooms; Anderson, DM, Cembella, AD, Hallegraeff, GM, Eds.; Springer-Verlag: Berlin, Germany, 1998; Volume G41, pp. 381–403.
[144]
Silva, SE. Intracellular bacteria: The origin of dinoflagellate toxicity. J Environ Pathol, Toxicol Oncol 1990, 10, 124–128.
[145]
Kodoma, M; Ogata, T; Sato, S. Bacterial production of saxitoxin. Agric Biol Chem 1988, 52, 1075–1077.
[146]
Plumley, FG. Purification of an enzyme involved in saxitoxin synthesis. J Phycol 2001, 37, 926–928.
[147]
Kellmann, R; Mihali, TK; Neilan, BA. Identification of a saxitoxin biosynthesis gene that has an evolutionary history with frequent horizontal gene transfer events. J Mol Evol 2008, 67, 526–538.
[148]
Mihali, TK; Kellmann, R; Neilan, BA. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5. BMC Biochem 2009, 10, 8.
[149]
Onodera, H; Satake, M; Oshima, Y; Yasumoto, T; Carmichael Wayne, W. New saxitoxin analogues from the freshwater filamentous cyanobacterium Lyngbya wollei. Nat Toxins 1997, 5, 146–151.
[150]
Moustafa, A; Loram, JE; Hackett, JD; Anderson, DM; Plumley, FG; Bhattacharya, D. Origin of saxitoxin biosynthetic genes in cyanobacteria. PLoS One 2009, 4, e5758.
[151]
Gallacher, S; Flynn, KJ; Franco, JM; Brueggemann, EE; Hines, HB. Evidence for production of paralytic shellfish toxins by bacteria associated with Alexandrium spp. (Dinophyta) in culture. Appl Environ Microbiol 1997, 63, 239–245.
[152]
Baker, TR; Doucette, GJ; Powell, CL; Boyer, GL; Plumley, FG. GTX(4) imposters: characterization of fluorescent compounds synthesized by Pseudomonas stutzeri SF/PS and Pseudomonas/Alteromonas PTB-1, symbionts of saxitoxin-producing Alexandrium spp. Toxicon 2003, 41, 339–347.
[153]
Li, Y; Muller, R. Non-modular polyketide synthases in myxobacteria. Phytochemistry 2009, 70, 1850–1857.
Coll, JM. Methodologies for transferring DNA into eukaryotic microalgae. Span J Agric Res 2006, 4, 316–330.
[161]
Lohuis, MRt; Miller, DJ. Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs. Plant J 2002, 13, 427–435.