The presence of lysine (Lys) or arginine (Arg) and tryptophan (Trp) are important for the antimicrobial effects of cationic peptides. Therefore, we designed and synthesized a series of antimicrobial peptides with various numbers of Lys (or Arg) and Trp repeats [(KW and RW) n-NH 2, where n equals 2, 3, 4, or 5]. Antifungal activities of these peptides increased with chain length. Light microscopy demonstrated that longer peptides ( n = 4, 5) strongly inhibited in vitro growth of Fusarium solani, and Fusarium oxysporum, at 4–32 μM. Furthermore, longer peptides displayed potent fungicidal activities against a variety of agronomical important filamentous fungi, including F. solani and F. oxysporum, at their minimal inhibitory concentrations (MICs) . However, RW series peptides showed slightly higher fungicidal activities than KW peptides against the two strains. Taken together, the results of this study indicate that these short peptides would be good candidates for use as synthetic or transgenic antifungal agents.
References
[1]
Laverty, G.; Gorman, S.P.; Gilmore, B.F. The potential of antimicrobial peptides as biocides. Int. J. Mol. Sci 2011, 12, 6566–6596.
[2]
Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol 2005, 3, 238–250.
[3]
Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol 2006, 24, 1551–1557.
[4]
Strom, M.B.; Rekdal, O.; Svendsen, J.S. Antimicrobial activity of short arginine- and tryptophan-rich peptides. J. Pept. Sci 2002, 8, 431–437.
[5]
Storm, M.B.; Haug, B.E.; Skar, M.L.; Stensen, W.; Stiberg, T.; Svendsen, J.S. The pharmacophore of short cationic antibacterial peptides. J. Med. Chem 2003, 46, 1567–1570.
[6]
Liu, Z.; Brady, A.; Young, A.; Rasimick, B.; Chen, K.; Zhou, C.; Kallenbach, N.R. Length effects in antimicrobial peptides of the (RW)n series. Antimicrob. Agents Chemother 2007, 51, 597–603.
[7]
Jing, W.; Hunter, H.N.; Hagel, J.; Vogel, H.J. The structure of the antimicrobial peptide Ac-RRWWRF-NH2 bound to micelles and its interactions with phospholipids bilayers. J. Pept. Res 2003, 61, 219–229.
[8]
Dathe, M.; Nikolenko, H.; Klose, J.; Bienert, M. Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides. Biochemistry 2004, 43, 9140–9150.
[9]
Sagaram, U.S.; Pandurangi, R.; Kaur, J.; Smith, T.J.; Shah, D.M. Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against fusarium graminearum. PLoS One 2011, 6, doi:10.1371/journal.pone.0018550.
Mu?oz, A.; López-Garcia, B.; Marcos, J.F. Comparative study of antimicrobial peptides to control citrus postharvest decay caused by penicillium digitatum. J. Agric. Food Chem 2007, 55, 8170–8176.
[12]
Mu?oz, A.; López-Garcia, B.; Pérez-Payá, E.; Marcos, J.F. Antimicrobial properties of derivatives of the cationic tryptophan-rich hexapeptide PAF26. Biochem. Biophys. Res. Commun 2007, 354, 172–177.
[13]
Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan and arginine rich antimicrobial peptides: Structures and mechanism of action. Biochim. Biophys. Acta 2006, 1758, 1184–1202.
[14]
Falla, T.J.; Karunaratne, D.N.; Hancock, R.E.W. Mode of action of the antimicrobial peptide indolicidin. J. Biol. Chem 1996, 271, 19298–19303.
[15]
Lay, F.T.; Anderson, M.A. Defensins–components of the innate immune system in plants. Curr. Protein Pept. Sci 2005, 6, 85–101.
Carvalho, A.O.; Gomes, V.M. Plant defensins–prospects for the biological functions and biotechnological properties. Peptides 2009, 30, 1007–1020.
[18]
Murad, A.M.; Pelegrini, P.B.; Neto, S.M.; Franco, O.L. Novel findings of defensins and their utilization in construction of transgenic plants. Transgenic Plant J 2007, 1, 39–48.
[19]
Stotz, H.U.; Thomson, J.G.; Wang, Y. Plant defensins: Defense, development and application. Plant Signal. Behav 2009, 4, 1010–1012.
López-García, B.; Pérez-Payá, E.; Marcos, J.F. Identification of novel hexapeptide bioactive against phytopathogenic fungi through screening of a synthetic peptide combinatorial library. Appl. Environ. Microbiol 2002, 68, 2453–2460.
[22]
Choi, J.; Moon, E. Identification of novel bioactive hexapeptides against phytopathogenic bacteria through rapid screening of a synthetic combinatorial library. J. Microbiol. Biotechnol 2009, 19, 792–802.
[23]
Lóopez-Garcia, B.; González-Candelas, L.; Pérez-payá, E.; Marcos, J.F. Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits. Mol. Plant Microbe Interact 2000, 13, 837–846.
[24]
Chen, P.W.; Shyu, C.L.; Mao, F.C. Antimicrobial activity of short hydrophobic and basic-rich peptides. Am. J. Vet. Res 2003, 64, 1088–1092.
[25]
Wessolowski, A.; Bienert, M.; Dathe, M. Antimicrobial activity of arginine and tryptophan rich hexapeptides: The effects of aromatic clusters, d-amino acid substitution and cyclization. J. Pept. Res 2004, 64, 159–169.
[26]
Gopal, R.; Kim, Y.J.; Seo, C.H.; Hahm, K.S.; Park, Y. Reversed sequence enhances antimicrobial activity of a synthetic peptide. J. Pept. Sci 2011, 17, 329–334.
[27]
Cochrane, V.W.; Cochrane, J.C. Chlamydospore induction in pure culture in Fusarium solani. Mycologia 1971, 63, 462–477.
[28]
Cho, J.H.; Rupe, J.C.; Cummings, M.S.; Gbur, E.E., Jr. Isolation and identification of Fusarium solani f. sp. glycines from soil on modified Nash and Snyder’s medium. Plant Dis. 2001, 85, 256–260.
[29]
Aoki, T.; O’Donnell, K.; Homma, Y.; Lattanzi, A. Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex—F. virguliforme in North America and F. tucumaniae in South America. Mycologia 2003, 95, 660–684.
[30]
Zaccardelli, M.; Vitale, S.; Luongo, L.; Merighi, M.; Corazza, L. Morphological and Molecular Characterization of Fusarium solani Isolates. J. Phytopathol 2008, 156, 534–541.
[31]
Gómez, Y.; Gil, K.; González, E.; Farías, L.M. Anti-fungi activity of organic extracts from the tree Fagara monophylla (Rutaceae) in Venezuela. Rev. Biol. Trop 2007, 55, 767–775.
[32]
Blondelle, S.E.; Takahashi, E.; Dinh, K.T.; Houghten, R.A. The antimicrobial activity of hexapeptides derived from synthetic combinatorial libraries. J. Appl. Bacteriol 1995, 78, 39–46.
[33]
Knight, S.C.; Anthony, V.M.; Brady, A.M.; Greenland, A.J.; Heaney, S.P.; Murray, D.C.; Powell, K.A.; Schulz, M.A.; Spinks, C.A.; Worthington, P.A.; et al. Rationale and perspectives in the development of fungicides. Annu. Rev. Phytopathol 1997, 35, 349–372.
[34]
Terras, F.R.G.; Eggermont, K.; Kovaleva, V.; Raikhel, N.V.; Osborn, R.W.; Kester, A.; Rees, S.B.; Torrekens, S.; van Leuven, F.; Vanderleyden, J.; et al. Small cysteine rich antifungal proteins from radish: Their role in host defence. Plant Cell 1995, 7, 573–588.
[35]
Ponti, D.; Mangoni, M.L.; Mignogna, G.; Simmaco, M.; Barra, D. An amphibian antimicrobial peptide variant expressed in Nicotiana tabacum confers resistance to phytopathogens. Biochem. J 2003, 370, 121–127.
[36]
Huang, Y.; Nordeen, R.O.; Di, M.; Owens, L.D.; Mcbeath, J.H. Expression of an engineered cecropin gene cassette in transgenic tobacco plants confers resistance to Pseudomonas syringae pv. tabaci. Phytopathology 1997, 87, 494–499.
[37]
Cary, J.W.; Rajasekaran, K.; Jaynes, J.M.; Cleveland, T.E. Transgenic expression of a gene encoding a synthetic antimicrobial peptide result in inhibition of fungal growth in vitro and in planta. Plant Sci 2000, 154, 171–181.
[38]
Osusky, M.; Zhou, G.; Osuska, L.; Hancock, R.E.; Kay, W.W.; Misra, S. Transgenic plants expressing cationic peptide chimeras exhibit broad spectrum resistance to phytopathogens. Nat. Biotechnol 2000, 18, 1162–1166.
[39]
Montesinos, E. Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett 2007, 270, 1–11.
[40]
Xing, H.Y.; Lawrence, C.B.; Chambers, O.; Davies, H.M.; Everett, N.P.; Li, Q.Q. Increased pathogen resistance and yield in transgenic plants expressing combinations of the modified antimicrobial peptides based on indolicidin and magainin. Planta 2006, 223, 1024–1032.
[41]
Bhargava, A.; Osusky, M.; Hancock, R.E.; Forward, B.S.; Kay, W.W.; Misra, S. Antiviral indolicidin variant peptides: Evaluation for broad-spectrum disease resistance in transgenic Nicotiana tabacum. Plant Sci 2007, 172, 515–523.
[42]
López-Garcia, B.; Veyrat, A.; Pérez-Payá, E.; González-candelas, L.; Marcos, J.F. Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens. Int. J. Food Microbiol 2003, 89, 163–170.
[43]
Gopal, R.; Park, J.S.; Seo, C.H.; Park, Y. Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. Int. J. Mol. Sci 2012, 13, 3229–3244.
[44]
Nan, Y.H.; Lee, S.H.; Kim, H.J.; Shin, S.Y. Mammalian cell toxicity and candidacidal mechanism of Arg- or Lys-containing Trp-rich model antimicrobial peptides and their d-enantiomeric peptides. Peptides 2010, 31, 1826–1831.
[45]
Mu?oz, A.; López-Garcia, B.; Marcos, J.F. Studies on the mode of action of the antifungal hexapeptide PAF26. Antimicrob. Agents Chemother 2006, 50, 3847–3855.
[46]
Munoz, A.; Marcos, J.F.; Read, N.D. Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26. Mol. Microbiol 2012, doi:10.1111/j.1365–2958.201208091.x.
[47]
Atherton, E.; Sheppard, R.C. Solid Phase Peptide Synthesis: A Practical Approach; IRL Press: Oxford, UK; p. 1989.
[48]
Van der Weerden, N.L.; Hancock, R.E.; Anderson, M.A. Permeabilization of fungal hyphae by the plant defensin NAD1 occurs through a cell wall dependent process. J. Biol. Chem 2010, 285, 37513–37520.
[49]
Park, S.C.; Lee, J.R.; Kim, J.Y.; Hwang, I.; Nah, J.W.; Cheong, H.; Park, Y.; Hahm, K.S. Pr-1, a novel antifungal protein from pumpkin rinds. Biotechnol. Lett 2010, 32, 125–130.