All Title Author
Keywords Abstract


Transcriptome Analysis Reveals Putative Genes Involved in Iridoid Biosynthesis in Rehmannia glutinosa

DOI: 10.3390/ijms131013748

Keywords: Rehmannia glutinosa, iridoid biosynthesis, transcriptome

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rehmannia glutinosa, one of the most widely used herbal medicines in the Orient, is rich in biologically active iridoids. Despite their medicinal importance, no molecular information about the iridoid biosynthesis in this plant is presently available. To explore the transcriptome of R. glutinosa and investigate genes involved in iridoid biosynthesis, we used massively parallel pyrosequencing on the 454 GS FLX Titanium platform to generate a substantial EST dataset. Based on sequence similarity searches against the public sequence databases, the sequences were first annotated and then subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) based analysis. Bioinformatic analysis indicated that the 454 assembly contained a set of genes putatively involved in iridoid biosynthesis. Significantly, homologues of the secoiridoid pathway genes that were only identified in terpenoid indole alkaloid producing plants were also identified, whose presence implied that route II iridoids and route I iridoids share common enzyme steps in the early stage of biosynthesis. The gene expression patterns of four prenyltransferase transcripts were analyzed using qRT-PCR, which shed light on their putative functions in tissues of R. glutinosa. The data explored in this study will provide valuable information for further studies concerning iridoid biosynthesis.

References

[1]  World Preservation Society. Powerful and Unusual Herbs from the Amazon and China; World Preservation Society Inc: Greenacres, FL, USA, 2000; pp. 26–27.
[2]  Zhang, R.X.; Li, M.X.; Jia, Z.P. Rehmannia glutinosa: Review of botany, chemistry and pharmacology. J. Ethnopharmacol 2008, 117, 199–214.
[3]  Luo, Y.Y.; Zhang, S.Q.; Suo, J.Z.; Sun, D.Y.; Cui, X.C. Determination of catalpol in rehmannia root by high performance liquid chromatography. Chin. Pharm. J 1994, 29, 38–40.
[4]  Tundis, R.; Loizzo, M.R.; Menichini, F.; Statti, G.A.; Menichini, F. Biological and pharmacological activities of iridoids: recent developments. Mini Rev. Med. Chem 2008, 8, 399–420.
[5]  Zhang, X.; Zhang, A.; Jiang, B.; Bao, Y.; Wang, J.; An, L. Further pharmacological evidence of he neuroprotective effect of catalpol from Rehmannia glutinosa.. Phytomedicine 2008, 15, 484–490.
[6]  Bi, J.; Wang, X.B.; Chen, L.; Hao, S.; An, L.J.; Jiang, B.; Guo, L. Catalpol protects mesencephalic neurons against MPTP induced neurotoxicity via attenuation of mitochondrial dysfunction and MAO-B activity. Toxicol. In Vitro 2008, 22, 1883–1889.
[7]  Cai, Q.Y.; Chen, X.S.; Zhan, X.L.; Yao, Z.X. Protective effects of catalpol on oligodendrocyte death and myelin breakdown in a rat model of chronic cerebral hypoperfusion. Neurosci. Lett 2011, 497, 22–26.
[8]  Jensen, S.R. Plant iridoids, Their Biosynthesis and Distribution in Angiosperms. In Ecological Chemistry and Biochemistry of Plant Terpenoids; Harborne, J.B., Tomas-Barberan, F.A., Eds.; Clarendon Press: Oxford, UK, 1991; pp. 133–158.
[9]  Damtoft, S.; Jensen, S.R.; Jessen, C.U.; Knudsen, T.B. Late stages in the biosynthesis of aucubin in Scrophularia. Phytochemistry 1993, 33, 1089–1093.
[10]  Damtoft, S.; Jensen, S.R.; Weiergang, I. Early stages in the biosynthesis of aucubin and harpagide. Phytochemistry 1994, 35, 621–622.
[11]  Damtoft, S. Biosynthesis of catalpol. Phytochemstry 1994, 35, 1187–1189.
[12]  Jensen, S.R.; Franzyk, H.; Wallander, E. Chemotaxonomy of the Oleaceae: Iridoids as taxonomic markers. Phytochemry 2002, 60, 213–231.
[13]  Hedhili, S.; Courdavault, V.; Giglioli-Guivarc’h, N.; Gantet, P. Regulation of the terpene moiety biosynthesis of Catharanthus roseus terpene indole alkaloids. Phytochem. Rev 2007, 6, 341–351.
[14]  El-Sayed, M.; Verpoorte, R. Catharanthus terpenoid indole alkaloids: Biosynthesis and regulation. Phytochem. Rev 2007, 6, 277–305.
[15]  Oudin, A.; Courtois, M.; Rideau, M.; Clastre, M. The iridoid pathway in Catharanthus roseus alkaloid biosynthesis. Phytochem. Rev 2007, 6, 259–276.
[16]  Chahed, K.; Oudin, A.; Guivarc’h, N.; Hamdi, S.; Chenieux, J.C.; Rideau, M.; Clastre, M. 1-Deoxy-d-xylulose-5-phosphate synthase from periwinkle: cDNA identification and induced gene expression in terpenoidindole alkaloid-producing cells. Plant Physiol. Biochem 2000, 38, 559–566.
[17]  Veau, B.; Courtois, M.; Oudin, A.; Chenieux, J.C.; Rideau, M.; Clastre, M. Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochem. Biophys. Acta 2000, 1517, 159–163.
[18]  Meijer, A.H.; Lopes Cardoso, M.I.; Voskuilen, J.T.; de Waal, A.; Verpoorte, R.; Hoge, J.H. Isolation and characterization of a cDNA clone from Catharanthus roseus encoding NADPH: Cytochrome P-450 reductase, an enzyme essential for reactions catalysed by cytochrome P-450 monooxygenases in plants. Plant J 1993, 4, 47–60.
[19]  Vetter, H.P.; Mangold, U.; Schr?der, G.; Marner, F.J.; Werck-Reichhart, D.; Schr?der, J. Molecular analysis and heterologous expression of an inducible cytochrome P450 protein from periwinkle (Catharanthus roseus L.). Plant Physiol 1992, 100, 998–1007.
[20]  Collu, G.; Unver, N.; Peltenburg-Looman, A.M.; van der Heijden, R.; Verpoorte, R.; Memelink, J. Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 2001, 508, 215–220.
[21]  Collu, G.; Garcia, A.A.; van der Heijden, R.; Verpoorte, R. Activity of the cytochrome P450 enzyme geraniol 10-hydroxylase and alkaloid production in plant cell cultures. Plant Sci 2002, 162, 165–172.
[22]  Burlat, V.; Oudin, A.; Courtois, M.; Rideau, M.; St-Pierre, B. Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 2004, 38, 131–141.
[23]  Oudin, A.; Mahroug, S.; Courdavault, V.; Hervouet, N.; Zelwer, C.; Rodríguez-Concepción, M.; St-Pierre, B.; Burlat, V. Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways inCatharanthus roseus. Plant Mol. Biol 2007, 65, 13–30.
[24]  Murata, J.; Roepke, J.; Gordon, H.; de Luca, V. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 2008, 20, 524–542.
[25]  Broun, P. Transcription factors as tools for metabolic engineering in plants. Curr. Opin. Plant Biol 2004, 7, 202–209.
[26]  Van der Fits, L.; Memelink, J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 2000, 289, 295–297.
[27]  Wang, Z.; Fang, B.; Chen, J.; Zhang, X.; Luo, Z.; Huang, L.; Chen, X.; Li, Y. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics 2010, 11, 726–739.
[28]  Wu, S.; Schalk, M.; Clark, A.; Miles, R.B.; Coates, R.; Chappell, J. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nature Biotech 2006, 24, 1441–1447.
[29]  Contin, A.; van der Heijden, R.; Lefeber, A.W.; Verpoorte, R. The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 1998, 434, 413–416.
[30]  Yamazaki, Y.; Kitajima, M.; Arita, M.; Takayama, H.; Sudo, H.; Yamazaki, M.; Aimi, N.; Saito, K. Biosynthesis of camptothecin. In silico and in vivo tracer study from [1–13C]glucose. Plant Physiol 2004, 134, 161–170.
[31]  Li, H.; Yang, S.Q.; Wang, H.; Tian, J.; Gao, W.Y. Biosynthesis of the iridoid glucoside, lamalbid, in Lamium barbatum. Phytochemstry 2010, 71, 1690–1694.
[32]  Courdavault, V.; Thiersault, M.; Courtois, M.; Gantet, P.; Oudin, A.; Doireau, P.; St-Pierre, B.; Giglioli-Guivarc’h, N. CaaX-prenyltransferases are essential for expression of genes involved in the early stages of monoterpenoid biosynthetic pathway in Catharanthus roseus cells. Plant Mol. Biol 2005, 57, 855–870.
[33]  Iijima, Y.; Gang, D.R.; Fridman, E.; Lewinsohn, E.; Pichersky, E. Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 2004, 134, 370–379.
[34]  Ikeda, H.; Esaki, N.; Nakai, S.; Hashimoto, K.; Uesato, S.; Soda, K.; Fujita, T. Acyclic monoterpene primary alcohol: NADP+ oxidoreductase of Rauwolfia serpentine cells: the key enzyme in biosynthesis of monoterpene alcohols. J. Biochem 1991, 109, 341–347.
[35]  Sun, Y.; Luo, H.; Li, Y.; Sun, C.; Song, J.; Niu, Y.; Zhu, Y.; Dong, L.; Lv, A.; Tramontano, E.; et al. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport. BMC Genomics 2011, 12, 533–543.
[36]  Welsch, R.; Wüst, F.; B?r, C.; Al-Babili, S.; Beyer, P. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 2008, 147, 367–380.
[37]  Keller, Y.; Bouvier, F.; d’Harlingue, A.; Camara, B. Metabolic compartmentation of plastid prenyllipid biosynthesis-evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur. J. Biochem 1998, 251, 413–417.
[38]  Tanaka, R.; Oster, U.; Kruse, E.; Rudiger, W.; Grimm, B. Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol 1999, 120, 695–704.
[39]  Devarenne, T.P.; Ghosh, A.; Chappell, J. Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco. Plant Physiol 2002, 129, 1095–1106.
[40]  McGarbey, D.; Croteau, R. Terpenoid metabolism. Plant Cell 1995, 7, 1015–1026.
[41]  Bouvier, F.; Rahier, A.; Camara, B. Biogenesis, molecular regulation and function of plant isoprenoids. Prog. Lipid Res 2005, 44, 357–429.
[42]  Tholl, D.; Lee, S. Terpene specialized metabolism in. Arabidopsis thaliana. Arabidopsis Book 2011, doi:10.1199/tab.0143.
[43]  Burke, C.C.; Croteau, R. Interactions with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J. Biol. Chem 2002, 277, 3141–3149.
[44]  Tholl, D.; Kish, C.M.; Orlova, I.; Sherman, D.; Gershenzon, J.; Pichersky, E.; Dudareva, N. Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell 2004, 16, 977–992.
[45]  Wang, G.; Dixon, R.A. Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc. Natl. Acad. Sci. USA 2009, 106, 9914–9919.
[46]  Orlova, I.; Nagegowda, D.A.; Kish, C.M.; Gutensohn, M.; Maeda, H.; Varbanova, M.; Fridman, E.; Yamaguchi, S.; Hanada, A.; Kamiya, Y.; et al. The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Plant Cell 2009, 21, 4002–4017.
[47]  Vandermoten, S.; Haubruge, E.; Cusson, M. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell. Mol. Life Sci 2009, 66, 3685–3695.
[48]  Schmidt, A.; W?chtler, B.; Temp, U.; Krekling, T.; Séguin, A.; Gershenzon, J. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol 2010, 152, 639–655.
[49]  Knudsen, J.T.; Gershenzon, J. The Chemical Diversity of Floral Scent. In Biology of Floral Scent; Dudareva, N., Pichensky, E., Eds.; CRC Press: Oxon, UK, 2006; pp. 27–52.
[50]  Sun, P.; Guo, Y.H.; Qi, J.J.; Zhou, L.L.; Li, X.E. Isolation and expression analysis of tuberous root development related genes in Rehmannia glutinosa. Mol. Biol. Rep 2010, 37, 1069–1079.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal