All Title Author
Keywords Abstract


Effects of Genetically Engineered Stem Cells Expressing Cytosine Deaminase and Interferon-Beta or Carboxyl Esterase on the Growth of LNCaP Prostate Cancer Cells

DOI: 10.3390/ijms131012519

Keywords: human stem cells, prostate cancer, cytosine deaminase, interferon-beta, carboxyl esterase, tumor-tropism

Full-Text   Cite this paper   Add to My Lib

Abstract:

The risk of prostate cancer has been increasing in men by degrees. To develop a new prostate cancer therapy, we used a stem cell-derived gene directed prodrug enzyme system using human neural stem cells (hNSCs) that have a tumor-tropic effect. These hNSCs were transduced with the therapeutic genes for bacterial cytosine deaminase (CD), alone or in combination with the one encoding human interferon-beta (IFN-β) or rabbit carboxyl esterase (CE) to generate HB1.F3.CD, HB1.F3.CD.IFN-β, and HB1.F3.CE cells, respectively. CD enzyme can convert the prodrug 5-fluorocytosine (5-FC) into the activated form 5-fluorouracil (5-FU). In addition, CE enzyme can convert the prodrug CPT-11 into a toxic agent, SN-38. In our study, the human stem cells were found to migrate toward LNCaP human prostate cancer cells rather than primary cells. This phenomenon may be due to interactions between chemoattractant ligands and receptors, such as VEGF/VEGFR2 and SCF/c-Kit, expressed as cancer and stem cells, respectively. The HB1.F3.CE, HB.F3.CD, or HB1.F3.CD.IFN-β cells significantly reduced the LNCaP cell viability in the presence of the prodrugs 5-FC or CPT-11. These results indicate that stem cells expressing therapeutic genes can be used to develop a new strategy for selectively treating human prostate cancer.

References

[1]  Jemal, A.; Murray, T.; Samuels, A.; Ghafoor, A.; Ward, E.; Thun, M.J. Cancer statistics, 2003. CA Cancer J. Clin 2003, 53, 5–26.
[2]  Eberl, M.M.; Sunga, A.Y.; Farrell, C.D.; Mahoney, M.C. Patients with a family history of cancer: Identification and management. J. Am. Board Fam. Pract 2005, 18, 211–217.
[3]  Martiniello-Wilks, R.; Dane, A.; Voeks, D.J.; Jeyakumar, G.; Mortensen, E.; Shaw, J.M.; Wang, X.Y.; Both, G.W.; Russell, P.J. Gene-directed enzyme prodrug therapy for prostate cancer in a mouse model that imitates the development of human disease. J. Gene Med 2004, 6, 43–54.
[4]  Venara, A.; Thibaudeau, E.; Lebdai, S.; Mucci, S.; Ridereau-Zins, C.; Azzouzi, R.; Hamy, A. Rectal metastasis of prostate cancer: About a case. J. Clin. Med. Res 2010, 2, 137–139.
[5]  Somers, K.D.; Brown, R.R.; Holterman, D.A.; Yousefieh, N.; Glass, W.F.; Wright, G.L., Jr; Schellhammer, P.F.; Qian, J.; Ciavarra, R.P. Orthotopic treatment model of prostate cancer and metastasis in the immunocompetent mouse: Efficacy of flt3 ligand immunotherapy. Int. J. Cancer 2003, 107, 773–780.
[6]  Grubb, R.L.; Calvert, V.S.; Wulkuhle, J.D.; Paweletz, C.P.; Linehan, W.M.; Phillips, J.L.; Chuaqui, R.; Valasco, A.; Gillespie, J.; Emmert-Buck, M.; et al. Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics 2003, 3, 2142–2146.
[7]  Petrylak, D.P.; Tangen, C.M.; Hussain, M.H.; Lara, P.N., Jr; Jones, J.A.; Taplin, M.E.; Burch, P.A.; Berry, D.; Moinpour, C.; Kohli, M.; et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 2004, 351, 1513–1520.
[8]  Satoh, T.; Irie, A.; Egawa, S.; Baba, S. In situ gene therapy for prostate cancer. Curr. Gene Ther 2005, 5, 111–119.
[9]  Eder, I.E.; Haag, P.; Bartsch, G.; Klocker, H. Gene therapy strategies in prostate cancer. Curr. Gene Ther 2005, 5, 1–10.
[10]  Dearnaley, D.P.; Hall, E.; Lawrence, D.; Huddart, R.A.; Eeles, R.; Nutting, C.M.; Gadd, J.; Warrington, A.; Bidmead, M.; Horwich, A. Phase III pilot study of dose escalation using conformal radiotherapy in prostate cancer: PSA control and side effects. Br. J. Cancer 2005, 92, 488–498.
[11]  Iversen, P.; Tyrrell, C.J.; Kaisary, A.V.; Anderson, J.B.; van Poppel, H.; Tammela, T.L.; Chamberlain, M.; Carroll, K.; Melezinek, I. Bicalutamide monotherapy compared with castration in patients with nonmetastatic locally advanced prostate cancer: 6.3 years of followup. J. Urol 2000, 164, 1579–1582.
[12]  Djavan, B.; Nasu, Y. Prostate cancer gene therapy-what have we learned and where are we going? Rev. Urol 2001, 3, 179–186.
[13]  Kang, N.H.; Hwang, K.A.; Yi, B.R.; Lee, H.J.; Jeung, E.B.; Kim, S.U.; Choi, K.C. Human amniotic fluid-derived stem cells expressing cytosine deaminase and thymidine kinase inhibits the growth of breast cancer cells in cellular and xenograft mouse models. Cancer Gene Ther 2012, 19, 412–419.
[14]  Oosterhoff, D.; Pinedo, H.M.; van der Meulen, I.H.; de Graaf, M.; Sone, T.; Kruyt, F.A.; van Beusechem, V.W.; Haisma, H.J.; Gerritsen, W.R. Secreted and tumour targeted human carboxylesterase for activation of irinotecan. Br. J. Cancer 2002, 87, 659–664.
[15]  Gardner, T.A.; Sloan, J.; Raikwar, S.P.; Kao, C. Prostate cancer gene therapy: Past experiences and future promise. Cancer Metastasis Rev 2002, 21, 137–145.
[16]  You, M.H.; Kim, W.J.; Shim, W.; Lee, S.R.; Lee, G.; Choi, S.; Kim, D.Y.; Kim, Y.M.; Kim, H.; Han, S.U. Cytosine deaminase-producing human mesenchymal stem cells mediate an antitumor effect in a mouse xenograft model. J. Gastroenterol. Hepatol 2009, 24, 1393–1400.
[17]  Parker, W.B.; Cheng, Y.C. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol. Ther 1990, 48, 381–395.
[18]  Wierdl, M.; Morton, C.L.; Danks, M.K.; Potter, P.M. Isolation and characterization of a cDNA encoding a horse liver butyrylcholinesterase: Evidence for CPT-11 drug activation. Biochem. Pharmacol 2000, 59, 773–781.
[19]  Wierdl, M.; Tsurkan, L.; Hyatt, J.L.; Edwards, C.C.; Hatfield, M.J.; Morton, C.L.; Houghton, P.J.; Danks, M.K.; Redinbo, M.R.; Potter, P.M. An improved human carboxylesterase for enzyme/prodrug therapy with CPT-11. Cancer Gene Ther 2008, 15, 183–192.
[20]  Yi, B.R.; Kang, N.H.; Hwang, K.A.; Kim, S.U.; Jeung, E.B.; Choi, K.C. Antitumor therapeutic effects of cytosine deaminase and interferon-beta against endometrial cancer cells using genetically engineered stem cells in vitro. Anticancer Res 2011, 31, 2853–2861.
[21]  Aboody, K.S.; Najbauer, J.; Danks, M.K. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 2008, 15, 739–752.
[22]  Bobis, S.; Jarocha, D.; Majka, M. Mesenchymal stem cells: Characteristics and clinical applications. Folia Histochem. Cytobiol 2006, 44, 215–230.
[23]  Studeny, M.; Marini, F.C.; Dembinski, J.L.; Zompetta, C.; Cabreira-Hansen, M.; Bekele, B.N.; Champlin, R.E.; Andreeff, M. Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl. Cancer Inst 2004, 96, 1593–1603.
[24]  Yi, B.R.; Kim, S.U.; Kim, Y.B.; Lee, H.J.; Cho, M.H.; Choi, K.C. Antitumor effects of genetically engineered stem cells expressing yeast cytosine deaminase in lung cancer brain metastases via their tumor-tropic properties. Oncol. Rep 2012, 27, 1823–1828.
[25]  Barkho, B.Z.; Munoz, A.E.; Li, X.; Li, L.; Cunningham, L.A.; Zhao, X. Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells 2008, 26, 3139–3149.
[26]  Kim, K.Y.; Yi, B.R.; Lee, H.R.; Kang, N.H.; Jeung, E.B.; Kim, S.U.; Choi, K.C. Stem cells with fused gene expression of cytosine deaminase and interferon-beta migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use. Int. J. Oncol 2011, 40, 1097–1104.
[27]  Yi, B.R.; O, S.N.; Kang, N.H.; Hwang, K.A.; Kim, S.U.; Jeung, E.B.; Kim, Y.B.; Heo, G.J.; Choi, K.C. Genetically engineered stem cells expressing cytosine deaminase and interferon-beta migrate to human lung cancer cells and have potentially therapeutic anti-tumor effects. Int. J. Oncol 2011, 39, 833–839.
[28]  Kim, K.Y.; Kim, S.U.; Leung, P.C.; Jeung, E.B.; Choi, K.C. Influence of the prodrugs 5-fluorocytosine and CPT-11 on ovarian cancer cells using genetically engineered stem cells: Tumor-tropic potential and inhibition of ovarian cancer cell growth. Cancer Sci 2010, 101, 955–962.
[29]  Dhanasekaran, S.M.; Barrette, T.R.; Ghosh, D.; Shah, R.; Varambally, S.; Kurachi, K.; Pienta, K.J.; Rubin, M.A.; Chinnaiyan, A.M. Delineation of prognostic biomarkers in prostate cancer. Nature 2001, 412, 822–826.
[30]  Imitola, J.; Raddassi, K.; Park, K.I.; Mueller, F.J.; Nieto, M.; Teng, Y.D.; Frenkel, D.; Li, J.; Sidman, R.L.; Walsh, C.A.; et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc. Natl. Acad. Sci. USA 2004, 101, 18117–18122.
[31]  Kang, N.H.; Yi, B.R.; Lim, S.Y.; Hwang, K.A.; Baek, Y.S.; Kang, K.S.; Choi, K.C. Human amniotic membrane-derived epithelial stem cells display anticancer activity in BALB/c female nude mice bearing disseminated breast cancer xenografts. Int. J. Oncol 2012, 40, 2022–2028.
[32]  Choi, E.A.; Lei, H.; Maron, D.J.; Mick, R.; Barsoum, J.; Yu, Q.C.; Fraker, D.L.; Wilson, J.M.; Spitz, F.R. Combined 5-fluorouracil/systemic interferon-beta gene therapy results in long-term survival in mice with established colorectal liver metastases. Clin. Cancer Res 2004, 10, 1535–1544.
[33]  Zhang, Y.; Chirmule, N.; Gao, G.P.; Qian, R.; Croyle, M.; Joshi, B.; Tazelaar, J.; Wilson, J.M. Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages. Mol. Ther 2001, 3, 697–707.

Full-Text

comments powered by Disqus