All Title Author
Keywords Abstract


Ischemic Postconditioning Alleviates Neuronal Injury Caused by Relief of Carotid Stenosis in a Rat Model of Cerebral Hypoperfusion

DOI: 10.3390/ijms131013338

Keywords: carotid stenosis, neuronal injury, ischemic postconditioning, oxidative stress, inflammatory response

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effects of early relief of heavy bilateral carotid stenosis and ischemic postconditioning on hippocampus CA1 neurons are still unclear. In this study, we used a rat model to imitate severe bilateral carotid stenosis in humans. The rats were divided into sham group, carotid stenosis group, stenosis relief group and ischemic postconditioning group. Ischemic postconditioning consisted of three cycles of 30 s ischemia and 30 s reperfusion. The cerebral blood flow was measured with a laser Doppler flowmeter. Neuronal death in the CA1 region was observed by hematoxylin-eosin staining, and the number of live neurons was assessed by cell counting under a light microscope. The levels of oxidative products MDA and 8- iso-PGF2α, inflammatory factors IL-1β and TNF-α, and the activities of anti-oxidative enzymes SOD and CAT were assayed by specific enzyme-linked immunosorbent assay (ELISA) kits, respectively. We found that relief of carotid stenosis and ischemic postconditioning could increase cerebral blood flow. When stenosis was relieved, the percentage of live neurons was 66.6% ± 6.2% on day 3 and 62.3% ± 9.8% on day 27, which was significantly higher than 55.5% ± 4.8% in stenosis group. Ischemic postconditioning markedly improved the live neurons to 92.5% ± 6.7% on day 3 and 88.6% ± 9.1% on day 27. Further study showed that, neuronal death caused by relief of stenosis is associated with increased oxidative stress and enhanced inflammatory response, and the protection of ischemic postconditioning is related to inhibition of oxidative stress and suppression of inflammatory response.

References

[1]  Taussky, P.; Hanel, R.A.; Meyer, F.B. Clinical considerations in the management of asymptomatic carotid artery stenosis. Neurosurg. Focus 2011, 31, E7.
[2]  Young, K.C.; Jain, A.; Jain, M.; Replogle, R.E.; Benesch, C.G.; Jahromi, B.S. Evidence-based treatment of carotid artery stenosis. Neurosurg. Focus 2011, 30, E2.
[3]  Landgraff, N.C.; Whitney, S.L.; Rubinstein, E.N.; Yonas, H. Cognitive and physical performance in patients with asymptomatic carotid artery disease. J. Neurol 2010, 257, 982–991.
[4]  Silvestrini, M.; Paolino, I.; Vernieri, F.; Pedone, C.; Baruffaldi, R.; Gobbi, B.; Cagnetti, C.; Provinciali, L.; Bartolini, M. Cerebral hemodynamics and cognitive performance in patients with asymptomatic carotid stenosis. Neurology 2009, 72, 1062–1068.
[5]  Zhou, Z.; Zhang, Y.; Zhu, C.; Sui, J.; Wu, G.; Meng, Z.; Huang, H.; Chen, K. Cognitive functions of carotid artery stenosis in the aged rat. Neuroscience 2012, 219, 137–144.
[6]  Chen, Y.H.; Lin, M.S.; Lee, J.K.; Chao, C.L.; Tang, S.C.; Chao, C.C.; Chiu, M.J.; Wu, Y.W.; Chen, Y.F.; Shih, T.F.; et al. Carotid stenting improves cognitive function in asymptomatic cerebral ischemia. Int. J. Cardiol 2012, 157, 104–107.
[7]  Duan, W.; Chun-Qing, Z.; Zheng, J.; Gui, L.; Huang, H.Q.; Chen, K.N. Relief of carotid stenosis improves impaired cognition in a rat model of chronic cerebral hypoperfusion. Acta Neurobiol. Exp(Wars) 2011, 71, 233–243.
[8]  Marnane, M.; Ni, C.D.; Callaly, E.; Sheehan, O.C.; Merwick, A.; Hannon, N.; Horgan, G.; Kyne, L.; Moroney, J.; McCormack, P.M.; et al. Stroke recurrence within the time window recommended for carotid endarterectomy. Neurology 2011, 77, 738–743.
[9]  Annambhotla, S.; Park, M.S.; Keldahl, M.L.; Morasch, M.D.; Rodriguez, H.E.; Pearce, W.H.; Kibbe, M.R.; Eskandari, M.K. Early vs. delayed carotid endarterectomy in symptomatic patients. J. Vasc. Surg 2012, doi:10.1016/j.jvs.2012.05.070.
[10]  Wu, T.Y.; Anderson, N.E.; Barber, P.A. Neurological complications of carotid revascularisation. J. Neurol. Neurosurg. Psychiatry 2012, 83, 543–550.
[11]  Liu, H.; Zhang, J.; Yang, Y.; Zhang, L.; Zeng, X. Decreased cerebral perfusion and oxidative stress result in acute and delayed cognitive impairment. Curr. Neurovasc. Res 2012, 9, 152–158.
[12]  Zhao, H.; Sapolsky, R.M.; Steinberg, G.K. Interrupting reperfusion as a stroke therapy: Ischemic postconditioning reduces infarct size after focal ischemia in rats. J. Cereb. Blood Flow Metab 2006, 26, 1114–1121.
[13]  Xing, B.; Chen, H.; Zhang, M.; Zhao, D.; Jiang, R.; Liu, X.; Zhang, S. Ischemic postconditioning inhibits apoptosis after focal cerebral ischemia/reperfusion injury in the rat. Stroke 2008, 39, 2362–2369.
[14]  Wang, J.Y.; Shen, J.; Gao, Q.; Ye, Z.G.; Yang, S.Y.; Liang, H.W.; Bruce, I.C.; Luo, B.Y.; Xia, Q. Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke 2008, 39, 983–990.
[15]  Penna, C.; Mancardi, D.; Rastaldo, R.; Pagliaro, P. Cardioprotection: A radical view Free radicals in pre and postconditioning. Biochim. Biophys. Acta 2009, 1787, 781–793.
[16]  Guo, J.Y.; Yang, T.; Sun, X.G.; Zhou, N.Y.; Li, F.S.; Long, D.; Lin, T.; Li, P.Y.; Feng, L. Ischemic postconditioning attenuates liver warm ischemia-reperfusion injury through Akt-eNOS-NO-HIF pathway. J. Biomed. Sci 2011, 18, 79.
[17]  Liu, K.X.; Li, Y.S.; Huang, W.Q.; Li, C.; Liu, J.X.; Li, Y. Immediate postconditioning during reperfusion attenuates intestinal injury. Intensive Care Med 2009, 35, 933–942.
[18]  Liu, X.; Chen, H.; Zhan, B.; Xing, B.; Zhou, J.; Zhu, H.; Chen, Z. Attenuation of reperfusion injury by renal ischemic postconditioning: The role of NO. Biochem. Biophys. Res. Commun 2007, 359, 628–634.
[19]  Loukogeorgakis, S.P.; Panagiotidou, A.T.; Yellon, D.M.; Deanfield, J.E.; MacAllister, R.J. Postconditioning protects against endothelial ischemia-reperfusion injury in the human forearm. Circulation 2006, 113, 1015–1019.
[20]  Ma, X.J.; Zhang, X.H.; Li, C.M.; Luo, M. Effect of postconditioning on coronary blood flow velocity and endothelial function in patients with acute myocardial infarction. Scand. Cardiovasc. J 2006, 40, 327–333.
[21]  Zhou, C.; Tu, J.; Zhang, Q.; Zhu, Y.; Zhang, W.; Yang, F.; Brann, D.W.; Wang, R. Delayed ischemic postconditioning protects hippocampal CA1 neurons by preserving mitochondrial integrity via Akt/GSK3β signaling. Neurochem. Int 2011, 59, 749–758.
[22]  Li, Z.Y.; Liu, B.; Yu, J.; Yang, F.W.; Luo, Y.N.; Ge, P.F. Ischemic postconditioning rescues brain injury caused by focal ischemia reperfusion via attenuating proteins oxidization. J. Int. Med. Res 2012, 40, 954–966.
[23]  Wang, Q.; Zhang, X.; Ding, Q.; Hu, B.; Xie, Y.; Li, X.; Yang, Q.; Xiong, L. Limb remote postconditioning alleviates cerebral reperfusion injury through reactive oxygen species-mediated inhibition of delta protein kinase C in rats. Anesth. Analg 2011, 113, 1180–1187.
[24]  Zhang, W.; Miao, Y.; Zhou, S.; Jiang, J.; Luo, Q.; Qiu, Y. Neuroprotective effects of ischemic postconditioning on global brain ischemia in rats through upregulation of hippocampal glutamine synthetase. J. Clin. Neurosci 2011, 18, 685–689.
[25]  Yuan, Y.; Guo, Q.; Ye, Z.; Pingping, X.; Wang, N.; Song, Z. Ischemic postconditioning protects brain from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis through PI3K-Akt pathway. Brain Res 2011, 1367, 85–93.
[26]  Ge, P.F.; Luo, T.F.; Zhang, J.Z.; Chen, D.W.; Luan, Y.X.; Fu, S.L. Ischemic preconditioning induces chaperone hsp70 expression and inhibits protein aggregation in the CA1 neurons of rats. Neurosci. Bull 2008, 24, 288–296.
[27]  Kim, V.B.; Brown, P.M.; Brown, P.M., Jr; Sun, Y.S.; Lust, R.M.; Chitwood, W.R., Jr. A carotid stenosis model in canines. J. Invest. Surg 2001, 14, 241–247.
[28]  Gao, X.; Ren, C.; Zhao, H. Protective effects of ischemic postconditioning compared with gradual reperfusion or preconditioning. J. Neurosci. Res 2008, 86, 2505–2511.
[29]  Zhao, H.; Ren, C.; Chen, X.; Shen, J. From rapid to delayed and remote postconditioning: The evolving concept of ischemic postconditioning in brain ischemia. Curr. Drug Targets 2012, 13, 173–187.
[30]  Ren, C.; Gao, X.; Niu, G.; Yan, Z.; Chen, X.; Zhao, H. Delayed postconditioning protects against focal ischemic brain injury in rats. PLoS One 2008, 3, e3851.
[31]  Ren, C.; Yan, Z.; Wei, D.; Gao, X.; Chen, X.; Zhao, H. Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res 2009, 1288, 88–94.
[32]  Nanetti, L.; Taffi, R.; Vignini, A.; Moroni, C.; Raffaelli, F.; Bacchetti, T.; Silvestrini, M.; Provinciali, L.; Mazzanti, L. Reactive oxygen species plasmatic levels in ischemic stroke. Mol. Cell. Biochem 2007, 303, 19–25.
[33]  Taffi, R.; Nanetti, L.; Mazzanti, L.; Bartolini, M.; Vignini, A.; Raffaelli, F.; Pasqualetti, P.; Vernieri, F.; Provinciali, L.; Silvestrini, M. Plasma levels of nitric oxide and stroke outcome. J. Neurol 2008, 255, 94–98.
[34]  Nanetti, L.; Raffaelli, F.; Vignini, A.; Perozzi, C.; Silvestrini, M.; Bartolini, M.; Provinciali, L.; Mazzanti, L. Oxidative stress in ischaemic stroke. Eur. J. Clin. Invest 2011, 41, 1318–1322.
[35]  Sugawara, T.; Chan, P.H. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid. Redox Signal 2003, 5, 597–607.
[36]  Amantea, D.; Marrone, M.C.; Nisticò, R.; Federici, M.; Bagetta, G.; Bernardi, G.; Mercuri, N.B. Oxidative stress in stroke pathophysiology validation of hydrogen peroxide metabolism as a pharmacological target to afford neuroprotection. Int. Rev. Neurobiol 2009, 85, 363–374.
[37]  Ikonomidou, C.; Kaindl, A.M. Neuronal death and oxidative stress in the developing brain. Antioxid. Redox Signal 2011, 14, 1535–1550.
[38]  Barone, F.C.; Feuerstein, G.Z. Inflammatory mediators and stroke: New opportunities for novel therapeutics. J. Cereb. Blood Flow Metab 1999, 19, 819–834.
[39]  Kadhim, H.J.; Duchateau, J.; Sebire, G. Cytokines and brain injury: Invited review. J. Intensive Care Med 2008, 23, 236–249.

Full-Text

comments powered by Disqus