All Title Author
Keywords Abstract


Anti-Inflammatory and Analgesic Activities of a Novel Biflavonoid from Shells of Camellia oleifera

DOI: 10.3390/ijms131012401

Keywords: biflavonoid, Camellia oleifera, anti-inflammation, analgesic activity, antioxidative activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Shells are by-products of oil production from Camellia oleifera which have not been harnessed effectively. The purpose of this research is to isolate flavonoid from shells of Camellia oleifera and evaluate its anti-inflammatory and analgesic effects. The flavonoid was identified as bimolecular kaempferol structure by UV, MS, 1H NMR and 13C NMR spectra, which is a new biflavonoid and first found in Camellia oleifera. It showed dose-dependent anti-inflammatory activity by carrageenin-induced paw oedema in rats and croton oil induced ear inflammation in mice, and analgesic activity by hot plate test and acetic acid induced writhing. The mechanism of anti-inflammation of biflavonoid is related to both bradykinin and prostaglandins synthesis inhibition. The biflavonoid showed both central and peripheral analgesic effects different from aspirin, inhibition of the synthesis or action of prostaglandins may contribute to analgesic effect of biflavonoid. The biflavonoid significantly decreased malonaldehyde (MDA) and increased superoxidase dismutase (SOD) and Glutathione peroxidase (GSH-Px) activity in serum ( p < 0.01), revealed strong free radical scavenging activity in vivo. It indicates the biflavonoid can control inflammation and pain by eliminating free radical so as to inhibit the mediators and decrease the prostaglandins. The biflavonoid can be used as a prospective medicine for inflammation and pain.

References

[1]  Staud, R. Peripheral pain mechanisms in chronic widespread pain. Best Pract. Res. Clin. Rheumatol 2011, 25, 155–164.
[2]  Odabsoglu, F.; Cakir, A.; Suleyman, H.; Aslan, A.; Bayir, Y.; Halici, M.; Kazaz, C. Gastroprotective and antioxidant effects of usnic acid an indomethacin-induced gastric ulcer in rats. J. Ethnopharmacol 2006, 103, 59–65.
[3]  Lucas, S.M.; Rothwell, N.J.; Gibson, R.M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol 2006, 147, S232–S240.
[4]  Weiss, U. Inflammation. Nature 2008, 454, 427.
[5]  Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435.
[6]  Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther 2002, 96, 67–202.
[7]  Evans, R.C.; Miller, N.J.; Bolwell, G.P.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant derived polyphenolic flavonoids. Free Radic. Res 1995, 22, 375–383.
[8]  Lin, Y.; Shi, R.X.; Wang, X. Luteolin, a flavonoid with potentials for cancer prevention and therapy. Curr. Cancer Drug Targets 2008, 8, 634–646.
[9]  Du, L.C.; Wu, B.L.; Chen, J.M. Flavonoid triglycosides from the seeds of Camellia oleifera Abel. Chin. Chem. Lett 2008, 19, 1315–1318.
[10]  Wang, Z.; Jia, Z.J.; Zhu, Z.Q.; Yang, C.R.; Zhou, J. Flavonoid constituents from oil cake of the seeds of Camellia oleifera. Acta Botanica Yunnanica 1986, 8, 157–160.
[11]  Chen, Y.F.; Yang, C.H.; Chang, M.S.; Ciou, Y.P.; Huang, Y.C. Foam properties and detergent abilities of the saponins from Camellia oleifera. Int. J. Mol. Sci 2010, 11, 4417–4425.
[12]  Jin, X.C. Bioactivities of water-soluble polysaccharides from fruit shell of Camellia oleifera Abel: Antitumor and antioxidant activities. Carbohyd. Polym 2012, 87, 2198–2201.
[13]  Lee, C.P.; Yen, G.C. Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. J. Agric. Food Chem 2006, 54, 779–784.
[14]  Luo, Y.M.; Li, B.; Xie, Y.H. Study on the chemical constituents of Camellia oleifera Abel. Chin. Tradit. Herb. Drugs 2003, 34, 117–118.
[15]  Sugimoto, S.; Chi, G.H.; Kato, Y.; Nakamura, S.; Matsuda, H.; Yoshikawa, M. Medicinal flowers. XXVI.1) structures of acylated oleanane-type triterpene oligoglycosides, yuchasaponins A, B, C, and D, from the flower buds of Camellia oleifera-gastroprotective, aldose reductase inhibitory, and radical scavenging effects. Chem. Pharm. Bull 2009, 3, 269–275.
[16]  Chattopadhyay, P.; Besra, S.E.; Gomes, A.; Das, M.; Sur, P.; Mitra, S.; Vedasiromoni, J.R. Anti-inflammatory activity of tea (Camellia sinensis) root extract. Life Sci 2004, 74, 1839–1849.
[17]  Jiang, T.J.; Ying, T.J.; Chen, Q.P.; Kang, H.Q.; Shen, J.F. Total Flavonoids and antioxidant activity of different solvent extracts from shells of Oiltea (Camellia oleifera) Seeds. J. Chin. Inst. Food Sci. Technol 2010, 10, 93–99.
[18]  Chen, J.H.; Liau, B.C.; Jong, T.T.; Chang, C.M. Extraction and purification of flavanone glycosides and kaempferol glycosides from defatted Camellia oleifera seeds by salting-out using hydrophilic isopropanol. Sep. Purif. Technol 2009, 67, 31–37.
[19]  Gao, D.F.; Xu, M.; Zhao, P.; Zhang, X.Y.; Wang, Y.F.; Yang, C.R.; Zhang, Y.J. Kaempferol acetylated glycosides from the seed cake of Camellia oleifera. Food Chem 2011, 124, 432–436.
[20]  Winter, C.A.; Risely, E.A.; Nuss, G.W. Carrageenin induced edema in hind paw of the rat as an assay for anti-inflammatory drug. Proceed. Soc. Exp. Biol. Med 1962, 111, 544–547.
[21]  Di Rosa, M. Biological properties of carrageenin. J. Pharm. Pharmacol 1972, 24, 89–102.
[22]  Antonio, M.A.; Brito, A.R.M.S. Oral anti-inflammatory and antiulcerogenic activities of hydroalcoholic extract and partitioned fractions of Turnera ulmifolia (Turneraceae). J. Ethnopharmacol 1998, 61, 215–228.
[23]  Okokon, J.E.; Antia, B.S.; Umoh, E. Analgesic and anti-inflammatory effects of ethanolic root extract of Hippocratea Africana. Int. J. Pharmacol 2008, 4, 51–55.
[24]  Derardt, R.; Jougney, S.; Delevalcee, F.; Falhout, M. Release of prostaglandins E and F in analgogenic reaction and its inhibition. Eur. J. Pharmacol 1980, 61, 17–24.
[25]  Ma, X.F.; Li, Y. In vivo antioxidative activity of polysaccharide from Heartleaf Houttuynia Herb. Tradit. Chin. Med. Res 2011, 2, 19–20.
[26]  Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol 2001, 54, 176–186.
[27]  Calderón-Monta?o, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini-Rev. Med. Chem 2011, 11, 298–344.
[28]  Zhishen, J.; Mengcheng, T.; Jianming, W. Determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 1999, 64, 555–559.
[29]  Sur, P.; Chaudhuri, T.; Vedasiromoni, J.R.; Gomes, A.; Ganguly, D.K. Anti-inflammatory and antioxidant property of saponins of tea [Camellia sinensis (L.) O. Kuntze] root extract. Phytother. Res 2001, 15, 174–176.
[30]  Brooks, R.R.; Bonk, K.R.; Decker, G.E.; Miller, K.E. Anti-inflammatory activity of orpanoxin administered orally and topically to rodents. Agents Actions 1985, 16, 369–376.
[31]  Somchit, M.N.; Sulaiman, M.R.; Zuraini, A.; Samsuddin, L. Antinociceptive and anti-inflammatory effects of Centella asiatica. Indian J. Pharmacol 2004, 36, 377–380.
[32]  Fontenele, J.B.; Viana, G.S.B.; Xavier-Filho, J.; Alencar, J.W. Anti-inflammatory and analgesic activity of a water-soluble fraction from shark cartilage. Braz. J. Med. Biol. Res 1996, 29, 643–646.

Full-Text

comments powered by Disqus