Ghrelin, a 28-amino acid peptide, is mainly secreted by the stomach. Ghrelin has been shown to have neuroprotective effects. However, whether ghrelin protects the spinal cord from ischemia/reperfusion (I/R) injury is unknown. To investigate this, 60 rats were randomly divided into three different groups: the sham group ( n = 20), the vehicle group ( n = 20), and the Ghrelin group (100 μg/kg, n = 20). Rats were sacrificed 12, 24, 48 and 72 h after ischemia. After the evaluation of neurologic function (48 h), the spinal cords were immediately removed for the determination of myeloperoxidase (MPO) activity (12–72 h). Apoptosis was quantitatively measured using the terminal transferase UTP nick end-labeling (TUNEL) method (24 h). The expression of bax and bcl-2 were evaluated by Western blot analysis (1 h), and GHSR-1a mRNA expression was detected using reverse transcriptase polymerase chain reaction (24 h). The neurological motor function was evaluated by ‘Tarlov’s score’. The neurologic outcomes in the ghrelin-group were significantly better than those in the vehicle group ( p < 0.05). Serum tumor necrosis factor (TNF-α) levels were assessed in the peripheral venous blood. Ghrelin decreased the serum TNF-α levels and ameliorated the down regulation of spinal cord MPO activity. The expression of ghrelin receptors (GHSR-1a) in the rat spinal cord was decreased by I/R injury and increased by ghrelin. Ghrelin reduced the TUNEL-positive rate. Greater bcl-2, HSP27, HSP70, and attenuated bax expression were observed in the ghrelin-treated rats. Our results suggest that ghrelin administration may inhibit spinal I/R injury. Moreover, the improvement of neurologic function in rats was increased after the ghrelin treatment.
References
[1]
Zhou, Y.; Zhao, Y.N.; Yang, E.B.; Ling, E.A.; Wang, Y.; Hassouna, M.M.; Mack, P. Induction of neuronal and inducible nitric oxide synthase in the motoneurons of spinal cord following transient abdominal aorta occlusion in rats. J. Surg. Res 1999, 87, 185–193.
Marsala, M.; Sorkin, L.S.; Yaksh, T.L. Transient spinal ischemia in rat: Characterization of spinal cord blood flow, extracellular amino acid release, and concurrent histopathological damage. J. Cereb. Blood Flow Metab 1994, 14, 604–614.
[4]
Lewen, A.; Matz, P.; Chan, P.H. Free radical pathways in cns injury. J. Neurotrauma 2000, 17, 871–890.
[5]
Barone, F.C.; Feuerstein, G.Z. Inflammatory mediators and stroke: New opportunities for novel therapeutics. J. Cereb. Blood Flow Metab 1999, 19, 819–834.
[6]
Matsushita, K.; Wu, Y.; Qiu, J.; Lang-Lazdunski, L.; Hirt, L.; Waeber, C.; Hyman, B.T.; Yuan, J.; Moskowitz, M.A. Fas receptor and neuronal cell death after spinal cord ischemia. J. Neurosci 2000, 20, 6879–6887.
[7]
De Haan, P.; Kalkman, C.J.; Jacobs, M.J. Pharmacologic neuroprotection in experimental spinal cord ischemia: A systematic review. J. Neurosurg. Anesthesiol 2001, 13, 3–12.
[8]
Andrews, Z.B. Central mechanisms involved in the orexigenic actions of ghrelin. Peptides 2011, 32, 2248–2255.
[9]
Andrews, Z.B. The extra-hypothalamic actions of ghrelin on neuronal function. Trends Neurosci 2011, 34, 31–40.
[10]
Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660.
[11]
Nakazato, M.; Murakami, N.; Date, Y.; Kojima, M.; Matsuo, H.; Kangawa, K.; Matsukura, S. A role for ghrelin in the central regulation of feeding. Nature 2001, 409, 194–198.
[12]
Shimizu, Y.; Nagaya, N.; Teranishi, Y.; Imazu, M.; Yamamoto, H.; Shokawa, T.; Kangawa, K.; Kohno, N.; Yoshizumi, M. Ghrelin improves endothelial dysfunction through growth hormone-independent mechanisms in rats. Biochem. Biophys. Res. Commun 2003, 310, 830–835.
[13]
Masuda, Y.; Tanaka, T.; Inomata, N.; Ohnuma, N.; Tanaka, S.; Itoh, Z.; Hosoda, H.; Kojima, M.; Kangawa, K. Ghrelin stimulates gastric acid secretion and motility in rats. Biochem. Biophys. Res. Commun 2000, 276, 905–908.
[14]
Xia, Q.; Pang, W.; Pan, H.; Zheng, Y.; Kang, J.S.; Zhu, S.G. Effects of ghrelin on the proliferation and secretion of splenic t lymphocytes in mice. Regul. Pept 2004, 122, 173–178.
[15]
Wu, R.; Dong, W.; Cui, X.; Zhou, M.; Simms, H.H.; Ravikumar, T.S.; Wang, P. Ghrelin down-regulates proinflammatory cytokines in sepsis through activation of the vagus nerve. Ann. Surg 2007, 245, 480–486.
[16]
Park, J.M.; Kakimoto, T.; Kuroki, T.; Shiraishi, R.; Fujise, T.; Iwakiri, R.; Fujimoto, K. Suppression of intestinal mucosal apoptosis by ghrelin in fasting rats. Exp. Biol. Med (Maywood) 2008, 233, 48–56.
[17]
Miao, Y.; Xia, Q.; Hou, Z.; Zheng, Y.; Pan, H.; Zhu, S. Ghrelin protects cortical neuron against focal ischemia/reperfusion in rats. Biochem. Biophys. Res. Commun 2007, 359, 795–800.
[18]
Chung, H.; Kim, E.; Lee, D.H.; Seo, S.; Ju, S.; Lee, D.; Kim, H.; Park, S. Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation. Endocrinology 2007, 148, 148–159.
[19]
Johansson, I.; Destefanis, S.; Aberg, N.D.; Aberg, M.A.; Blomgren, K.; Zhu, C.; Ghe, C.; Granata, R.; Ghigo, E.; Muccioli, G.; et al. Proliferative and protective effects of growth hormone secretagogues on adult rat hippocampal progenitor cells. Endocrinology 2008, 149, 2191–2199.
[20]
Jiang, X.; Ai, C.; Shi, E.; Nakajima, Y.; Ma, H. Neuroprotection against spinal cord ischemia-reperfusion injury induced by different ischemic postconditioning methods: Roles of phosphatidylinositol 3-kinase-akt and extracellular signal-regulated kinase. Anesthesiology 2009, 111, 1197–1205.
Kushimoto, S.; Okajima, K.; Uchiba, M.; Murakami, K.; Harada, N.; Okabe, H.; Takatsuki, K. Role of granulocyte elastase in ischemia/reperfusion injury of rat liver. Crit. Care Med 1996, 24, 1908–1912.
[24]
Kodama, T.; Ashitani, J.; Matsumoto, N.; Kangawa, K.; Nakazato, M. Ghrelin treatment suppresses neutrophil-dominant inflammation in airways of patients with chronic respiratory infection. Pulm. Pharmacol. Ther 2008, 21, 774–779.
[25]
Dixit, V.D.; Schaffer, E.M.; Pyle, R.S.; Collins, G.D.; Sakthivel, S.K.; Palaniappan, R.; Lillard, J.W., Jr; Taub, D.D. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and t cells. J. Clin. Invest. 2004, 114, 57–66.
[26]
Hattori, N. Expression, regulation and biological actions of growth hormone (gh) and ghrelin in the immune system. Growth Horm. IGF Res 2009, 19, 187–197.
[27]
Konturek, P.C.; Brzozowski, T.; Engel, M.; Burnat, G.; Gaca, P.; Kwiecien, S.; Pajdo, R.; Konturek, S.J. Ghrelin ameliorates colonic inflammation. Role of nitric oxide and sensory nerves. J. Physiol. Pharmacol 2009, 60, 41–47.
[28]
Kiyoshima, T.; Fukuda, S.; Matsumoto, M.; Iida, Y.; Oka, S.; Nakakimura, K.; Sakabe, T. Lack of evidence for apoptosis as a cause of delayed onset paraplegia after spinal cord ischemia in rabbits. Anesth. Analg 2003, 96, 839–846.
[29]
Li, M.; Ona, V.O.; Chen, M.; Kaul, M.; Tenneti, L.; Zhang, X.; Stieg, P.E.; Lipton, S.A.; Friedlander, R.M. Functional role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury. Neuroscience 2000, 99, 333–342.
[30]
Okutan, O.; Solaroglu, I.; Beskonakli, E.; Taskin, Y. Recombinant human erythropoietin decreases myeloperoxidase and caspase-3 activity and improves early functional results after spinal cord injury in rats. J. Clin. Neurosci 2007, 14, 364–368.
[31]
Savas, S.; Delibas, N.; Savas, C.; Sutcu, R.; Cindas, A. Pentoxifylline reduces biochemical markers of ischemia-reperfusion induced spinal cord injury in rabbits. Spinal Cord 2002, 40, 224–229.
[32]
Xu, J.; Wang, S.; Lin, Y.; Cao, L.; Wang, R.; Chi, Z. Ghrelin protects against cell death of hippocampal neurons in pilocarpine-induced seizures in rats. Neurosci. Lett 2009, 453, 58–61.
[33]
Hu, X.L.; Olsson, T.; Johansson, I.M.; Brannstrom, T.; Wester, P. Dynamic changes of the anti- and pro-apoptotic proteins Bcl-w, Bcl-2, and Bax with smac/diablo mitochondrial release after photothrombotic ring stroke in rats. Eur. J. Neurosci 2004, 20, 1177–1188.
[34]
Lee, J.E.; Yenari, M.A.; Sun, G.H.; Xu, L.; Emond, M.R.; Cheng, D.; Steinberg, G.K.; Giffard, R.G. Differential neuroprotection from human heat shock protein 70 overexpression in in vitro and in vivo models of ischemia and ischemia-like conditions. Exp. Neurol 2001, 170, 129–139.
[35]
Seok, Y.M.; Kim, J.; Choi, K.C.; Yoon, C.H.; Boo, Y.C.; Park, Y.; Park, K.M. Wen-pi-tang-hab-wu-ling-san attenuates kidney ischemia/reperfusion injury in mice. A role for antioxidant enzymes and heat-shock proteins. J. Ethnopharmacol 2007, 112, 333–340.
[36]
Chen, Y.; Voegeli, T.S.; Liu, P.P.; Noble, E.G.; Currie, R.W. Heat shock paradox and a new role of heat shock proteins and their receptors as anti-inflammation targets. Inflamm. Allergy Drug Targets 2007, 6, 91–100.
[37]
Robinson, M.B.; Tidwell, J.L.; Gould, T.; Taylor, A.R.; Newbern, J.M.; Graves, J.; Tytell, M.; Milligan, C.E. Extracellular heat shock protein 70: A critical component for motoneuron survival. J. Neurosci 2005, 25, 9735–9745.