All Title Author
Keywords Abstract

Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles

DOI: 10.3390/ijms131012242

Keywords: ZnS, CdS, nanoparticles, photocatalytic, visible light, degradation, methylene blue, pH

Full-Text   Cite this paper   Add to My Lib


ZnS and CdS nanoparticles were prepared by a simple microwave irradiation method under mild conditions. The obtained nanoparticles were characterized by XRD, TEM and EDX. The results indicated that high purity of nanosized ZnS and CdS was successfully obtained with cubic and hexagonal crystalline structures, respectively. The band gap energies of ZnS and CdS nanoparticles were estimated using UV-visible absorption spectra to be about 4.22 and 2.64 eV, respectively. Photocatalytic degradation of methylene blue was carried out using physical mixtures of ZnS and CdS nanoparticles under a 500-W halogen lamp of visible light irradiation. The residual concentration of methylene blue solution was monitored using UV-visible absorption spectrometry. From the study of the variation in composition of ZnS:CdS, a composition of 1:4 (by weight) was found to be very efficient for degradation of methylene blue. In this case the degradation efficiency of the photocatalyst nanoparticles after 6 h irradiation time was about 73% with a reaction rate of 3.61 × 10 ? 3 min ?1. Higher degradation efficiency and reaction rate were achieved by increasing the amount of photocatalyst and initial pH of the solution.


[1]  Jiang, R.; Zhu, H.; Li, X.; Xiao, L. Visible light photocatalytic decolourization of C. I. Acid Red 66 by chitosan capped CdS composite nanoparticles. Chem. Eng. J 2009, 152, 537–542.
[2]  Sharma, M.; Jain, T.; Singh, S.; Pandey, O.P. Photocatalytic degradation of organic dyes under UV–visible light using capped ZnS nanoparticles. Sol. Energy 2012, 86, 626–633.
[3]  Torres-Martínez, C.L.; Kho, R.; Mian, O.I.; Mehra, R.K. Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS nanocrystals. J. Colloid Interface Sci 2001, 240, 525–532.
[4]  Zhu, H.; Jiang, R.; Xiao, L.; Chang, Y.; Guan, Y.; Li, X.; Zeng, G. Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J. Hazard. Mater 2009, 169, 933–940.
[5]  Wang, R.; Xu, D.; Liu, J.; Li, K.; Wang, H. Preparation and photocatalytic properties of CdS/La2Ti2O7 nanocomposites under visible light. Chem. Eng. J 2011, 168, 455–460.
[6]  Andrade, G.R.S.; Nascimento, C.C.; Neves, E.C.; Barbosa, C.D.A.E.S.; Costa, L.P.; Barreto, L.S.; Gimenez, I.F. One-step preparation of CdS nanocrystals supported on thiolated silica-gel matrix and evaluation of photocatalytic performance. J. Hazard. Mater 2012, 203–204, 151–157.
[7]  Pouretedal, H.R.; Norozi, A.; Keshavarz, M.H.; Semnani, A. Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J. Hazard. Mater 2009, 162, 674–681.
[8]  Maji, S.K.; Dutta, A.K.; Srivastava, D.N.; Paul, P.; Mondal, A.; Adhikary, B. Effective photocatalytic degradation of organic pollutant by ZnS nanocrystals synthesized via thermal decomposition of single-source precursor. Polyhedron 2011, 30, 2493–2498.
[9]  Whang, T.-J.; Huang, H.-Y.; Hsieh, M.-T.; Chen, J.-J. Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue. Int. J. Mol. Sci 2009, 10, 4707–4718.
[10]  Gou, Y.; Su, Z.; Xue, Z. A study on preparation and photocatalytic characterization of conjugated polymer/ZnS complex. Mater. Res. Bull 2004, 39, 2203–2208.
[11]  Xie, Y.; Zhang, C.; Miao, S.; Liu, Z.; Ding, K.; Miao, Z.; An, G.; Yang, Z. One-pot synthesis of ZnS/polymer composites in supercritical CO2-ethanol solution and their applications in degradation of dyes. J. Colloid Interface Sci 2008, 318, 110–115.
[12]  Li, J.-H.; Lu, A.-H.; Liu, F.; Fan, L.-Z. Synthesis of ZnS/dravite composite and its photocatalytic activity on degradation of methylene blue. Solid State Ionics 2008, 179, 1387–1390.
[13]  Wu, X.; Li, K.; Wang, H. Facile synthesis of ZnS nanostructured spheres and their photocatalytic properties. J. Alloy. Compd 2009, 487, 537–544.
[14]  Li, Y.; He, X.; Cao, M. Micro-emulsion-assisted synthesis of ZnS nanospheres and their photocatalytic activity. Mater. Res. Bull 2008, 43, 3100–3110.
[15]  Taghvaei, V.; Habibi-Yangjeh, A.; Behboudnia, M. Hydrothermal and template-free preparation and characterization of nanocrystalline ZnS in presence of a low-cost ionic liquid and photocatalytic activity. Physica E 2010, 42, 1973–1978.
[16]  Zhang, L.; Qin, D.; Yang, G.; Zhang, Q. The investigation on synthesis and optical properties of ZnS:Co nanocrystals by using hydrothermal method. Chalcogenide Lett 2012, 9, 93–98.
[17]  Qiu, W.; Xu, M.; Yang, X.; Chen, F.; Nan, Y.; Chen, H. Novel hierarchical CdS crystals by an amino acid mediated hydrothermal process. J. Alloy. Compd 2011, 509, 8413–8420.
[18]  Chai, L.; Du, J.; Xiong, S.; Li, H.; Zhu, Y.; Qian, Y. Synthesis of wurtzite ZnS nanowire bundles using a solvothermal technique. J. Phys. Chem. C 2007, 111, 12658–12662.
[19]  Zhou, H.; Fan, T.; Zhang, D.; Guo, Q.; Ogawa, H. Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures. Chem. Mater 2007, 19, 2144–2146.
[20]  Yadav, R.S.; Mishra, P.; Mishra, R.; Kumar, M.; Pandey, A.C. Growth mechanism and optical property of CdS nanoparticles synthesized using amino-acid histidine as chelating agent under sonochemical process. Ultrason. Sonochem 2010, 17, 116–122.
[21]  Chang, S.-Q.; Kang, B.; Dai, Y.-D.; Zhang, H.-X.; Chen, D. One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a gamma-radiation route. Nanoscale Res. Lett 2011, 6, 591.
[22]  Chatterjee, A.; Priyam, A.; Das, S.K.; Saha, A. Size tunable synthesis of cysteine-capped CdS nanoparticles by γ-irradiation. J. Colloid Interface Sci 2006, 294, 334–342.
[23]  Sun, J.Q.; Shen, X.P.; Chen, K.M.; Liu, Q.; Liu, W. Low-temperature synthesis of hexagonal ZnS nanoparticles by a facile microwave-assisted single-source method. Solid State Commun 2008, 147, 501–504.
[24]  Molaei, M.; Iranizad, E.S.; Marandi, M.; Taghavinia, N.; Amrollahi, R. Synthesis of CdS nanocrystals by a microwave activated method and investigation of the photoluminescence and electroluminescence properties. Appl. Surf. Sci 2011, 257, 9796–9801.
[25]  Entezari, M.H.; Ghows, N. Micro-emulsion under ultrasound facilitates the fast synthesis of quantum dots of CdS at low temperature. Ultrason. Sonochem. 2010, 18, 127–134.
[26]  Park, K.; Yu, H.; Chung, W.; Kim, B.-J.; Kim, S. Effect of heat-treatment on CdS and CdS/ZnS nanoparticles. J. Mater. Sci 2009, 44, 4315–4320.
[27]  Poormohammadi-Ahandani, Z.; Habibi-Yangjeh, A. Fast, green and template-free method for preparation of Zn1-xCdxS nanoparticles using microwave irradiation and their photocatalytic activities. Physica E 2010, 43, 216–223.
[28]  Zhu, J.-J.; Wang, H. Synthesis of Metal Chalcogenide Nanoparticles. In Encyclopedia of Nanoscience and Nanotechnology; American Scientific Publishers: Stevenson Ranch, CA, USA, 2004; Volume 10, pp. 347–367.
[29]  Simmons, B.A.; Li, S.; John, V.T.; McPherson, G.L.; Bose, A.; Zhou, W.; He, J. Morphology of CdS nanocrystals synthesized in a mixed surfactant system. Nano Lett 2002, 2, 263–268.
[30]  Seoudi, R.; Shabaka, A.; Eisa, W.H.; Anies, B.; Farage, N.M. Effect of the prepared temperature on the size of CdS and ZnS nanoparticle. Physica B 2010, 405, 919–924.
[31]  Zhao, J.; Yang, X. Photocatalytic oxidation for indoor air purification: A literature review. Build. Environ 2003, 38, 645–654.
[32]  Das, D.P.; Biswal, N.; Martha, S.; Parida, K.M. Solar-light induced photodegradation of organic pollutants over CdS-pillared zirconium–titanium phosphate (ZTP). J. Mol. Catal. A 2011, 349, 36–41.
[33]  Chirita, M.; Grozescu, I.; Taubert, L.; Radulescu, H.; Princz, E.; Stefanovits-Bányai, é.; Caramalau, C.; Bulgariu, L.; Macoveanu, M.; Muntean, C. Fe2O3—Nanoparticles, physical properties and their photochemical and photoelectrochemical applications. Chem. Bull. 2009, 54, 1.
[34]  Xu, X.; Lu, R.; Zhao, X.; Xu, S.; Lei, X.; Zhang, F.; Evans, D.G. Fabrication and photocatalytic performance of a ZnxCd1-xS solid solution prepared by sulfuration of a single layered double hydroxide precursor. Appl. Catal. B 2011, 102, 147–156.
[35]  Antoniadou, M.; Daskalaki, V.M.; Balis, N.; Kondarides, D.I.; Kordulis, C.; Lianos, P. Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO2 combined photocatalysts. Appl. Catal. B 2011, 107, 188–196.
[36]  Roy, A.; De, G. Immobilisation of CdS, ZnS and mixed ZnS-CdS on filter paper: Effect of hydrogen production from alkaline Na2S/Na2S2O3 solution. J. Photoch. Photobio. A 2003, 157, 87–92.
[37]  Franco, A.; Neves, M.C.; Carrott, M.M.L.R.; Mendon?a, M.H.; Pereira, M.I.; Monteiro, O.C. Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites. J. Hazard. Mater 2009, 161, 545–550.
[38]  Tang, W.Z.; Huang, C.P. Inhibitory effect of thioacetamide on CdS dissolution during photocatalytic oxidation of 2,4-dichlorophenol. Chemosphere 1995, 30, 1385–1399.
[39]  Davis, A.P.; Huang, C.P. The photocatalytic oxidation of sulfur-containing organic compounds using cadmium sulfide and the effect on CdS photocorrosion. Water Res 1991, 25, 1273–1278.
[40]  Wang, K.; Yu, L.; Yin, S.; Li, H.; Li, H. Photocatalytic degradation of methylene blue on magnetically separable FePc/Fe3O4 nanocomposite under visible irradiation. Pure Appl. Chem 2009, 81, 2327–2335.
[41]  Abdollahi, Y.; Abdullah, A.H.; Zainal, Z.; Yusof, N.A. Photocatalytic degradation of p-Cresol by zinc oxide under UV irradiation. Int. J. Mol. Sci 2011, 13, 302–315.


comments powered by Disqus