Bromeliads are of great economic importance in flower production; however little information is available with respect to genetic characterization of cultivated bromeliads thus far. In the present study, a selection of cultivated bromeliads was characterized via inter-simple sequence repeat (ISSR) markers with an emphasis on genetic diversity and population structure. Twelve ISSR primers produced 342 bands, of which 287 (~84%) were polymorphic, with polymorphic bands per primer ranging from 17 to 34. The Jaccard’s similarity ranged from 0.08 to 0.89 and averaged ~0.30 for the investigated bromeliads. The Bayesian-based approach, together with the un-weighted paired group method with arithmetic average (UPGMA)-based clustering and the principal coordinate analysis (PCoA), distinctly grouped the bromeliads from Neoregelia, Guzmania, and Vriesea into three separately clusters, well corresponding with their botanical classifications; whereas the bromeliads of Aechmea other than the recently selected hybrids were not well assigned to a cluster. Additionally, ISSR marker was proven efficient for the identification of hybrids and bud sports of cultivated bromeliads. The findings achieved herein will further our knowledge about the genetic variability within cultivated bromeliads and therefore facilitate breeding for new varieties of cultivated bromeliads in future as well.
References
[1]
Luther, H.E. An Alphabetical List of Bromeliad Binomials, 9th ed ed.; The Bromeliad Society International, Inc: Orlando, FL, USA, 2004.
[2]
Barfuss, M.H.J.; Samuel, R.; Till, W.; Stuessy, T.F. Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. Am. J. Bot 2005, 92, 337–351.
[3]
Versieux, L.M.; Wendt, T. Bromeliaceae diversity and conservation in Minas Gerais state, Brazil. Biodivers. Conserv 2007, 16, 2989–3009.
[4]
Izquierdo, L.Y.; Pinero, D. High genetic diversity in the only known population of Aechmea tuitensis (Bromeliaceae). Aust. J. Bot 2000, 48, 645–650.
[5]
Sass, C.; Specht, C.D. Phylogenetic estimation of the core Bromeliads with an emphasis on the genus Aechmea (Bromeliaceae). Mol. Phylogenet. Evol 2010, 55, 559–571.
[6]
Barbará, T.; Lexer, C.; Martinelli, G.; Mayo, S.; Fay, M.F.; Heuertz, M. Within-population spatial genetic structure in four naturally fragmented species of a neotropical inselberg radiation, Alcantarea imperialis, A. geniculata, A glaziouana, and A. regina (Bromeliaceae). Heredity 2008, 101, 285–296.
[7]
Barbará, T.; Martinelli, G.; Palma-Silva, C.; Fay, M.F.; Mayo, S.; Lexer, C. Genetic relationships and variation in reproductive strategies in four closely related bromeliads adapted to neotropical “inselbergs”: Alcantarea glaziouana, A. regina, A. geniculata and A. imperialis (Bromeliaceae). Ann. Bot 2009, 103, 65–77.
[8]
Gonzalez-Astorga, J.; Cruz-Angon, A.; Flores-Palacios, A.; Vovides, A.P. Diversity and genetic structure of the Mexican endemic epiphyte Tillandsia achyrostachys E. Morr. ex Baker var. achyrostachys (Bromeliaceae). Ann. Bot 2004, 94, 545–551.
[9]
Palma-Silva, C.; Lexer, C.; Paggi, G.M.; Barbará, T.; Bered, F.; Bodanese-Zanettini, M.H. Range-wide patterns of nuclear and chloroplast DNA diversity in Vriesea gigantean (Bromeliaceae), a neotropical forest species. Heredity 2009, 103, 503–512.
[10]
Paggi, G.M.; Sampaio, J.A.T.; Bruxel, M.; Zanella, C.M.; G?etze, M.; Büttow, M.V.; Palma-Silva, C.; Bered, F. Seed dispersal and population structure in Vriesea gigantea, a bromeliad from the Brazilian Atlantic Rainforest. Bot. J. Linn. Soc 2010, 164, 317–325.
[11]
Cavallari, M.M.; Forzza, R.C.; Veasey, E.A.; Zucchi, M.I.; Oliveira, G.C.X. Genetic variation in three endangered species of Encholirium (Bromeliaceae) from Cadeia do Espinhaco, Brazil, detected using RAPD Markers. Biodivers. Conserv 2006, 15, 4357–4373.
[12]
Sgorbati, S.; Labra, M.; Grugni, E.; Barcaccia, G.; Galasso, G.; Boni, U.; Mucciarelli, M.; Citterio, S.; Benavides, I.A.; Venero, G.L.; et al. A survey of genetic diversity and reproductive biology of Puya raimondii (Bromeliaceae), the endangered queen of the Andes. Plant Biol 2004, 6, 222–230.
[13]
Zhang, F.; Wang, W.; Ge, Y.; Shen, X.; Tian, D.; Liu, J.; Liu, X.; Yu, X.; Zhang, Z. Genetic relatedness among Aechmea species and hybrids inferred from AFLP markers and pedigree data. Sci. Hortic 2012, 139, 39–45.
Carlier, J.D.; Reis, A.; Duval, M.F.; d’Eeckenbrugge, G.C.; Leit?o, J.M. Genetic maps of RAPD, AFLP and ISSR markers in Ananas bracteatus and A. comosus using the pseudo-testcross strategy. Plant Breed 2008, 123, 186–192.
[16]
Carlier, J.D.; Sousa, N.H.; Santo, T.E.; d’Eeckenbrugge, G.C.; Leit?o, J.M. A genetic map of pineapple (Ananas comosus (L.) Merr.) including SCAR, CAPS, SSR and EST-SSR markers. Mol. Breed 2012, 29, 245–260.
[17]
Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 1980, 8, 4321–4325.
[18]
Mortz, E.; Krogh, T.N.; Vorum, H.; Gorg, A. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted desorption/ionization-time of flight analysis. Proteomics 2001, 1, 1359–1363.
[19]
Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129.
[20]
Rohlf, F.J. NTSYSpc Numerical Taxonomy and Multivariate Analysis System, version 2.2; Exeter Software: New York, NY, USA, 2005.
[21]
Hampl, V.; Pavlicek, A.; Flegr, J. Construction and bootstrap of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: Application to trichomonad parasites. Int. J. Syst. Evol. Microbiol 2001, 51, 731–735.
[22]
Pritchard, J.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 1555, 945–959.
[23]
Hubisz, M.J.; Falush, D.; Stephens, M.; Pritchard, J.K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour 2009, 9, 1322–1332.
[24]
Pritchard, J.K.; Falus, D. Documentation for STRUCTURE Software, version 2.3; The University of Chicago Press: Chicago, IL, USA, 2009.
[25]
Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol 2005, 14, 2611–2620.
[26]
Sikdar, B.; Bhattacharya, M.; Mukherjee, A.; Banerjee, A.; Ghosh, E.; Ghosh, B.; Roy, S.C. Genetic diversity in important members Cucurbitaceae using isozyme, RAPD and ISSR markers. Biol. Plant 2010, 54, 135–140.
[27]
Farsani, T.M.; Etemadi, N.; Sayed-Tabatabaei, B.E.; Talebi, M. Assessment of genetic diversity of Bermudagrass (Cynodon dactylon) using ISSR markers. Int. J. Mol. Sci 2012, 13, 383–392.
[28]
Campa, A.; Trabanco, N.; Perez-Vega, E.; Rovira, M.; Ferreira, J.J. Genetic relationship between cultivated and wild hazelnuts (Corylus avellana L.) collected in northern Spain. Plant Breed 2011, 130, 360–366.
[29]
Gaiero, P.; Mazzella, C.; Agostini, G.; Bertolazzi, S.; Rossato, M. Genetic diversity among endangered Uruguayan populations of Butia Becc. Species based on ISSR. Plant Syst. Evol 2011, 292, 105–116.
[30]
Zhang, F.; Ge, Y.; Wang, W.; Shen, X.; Liu, X.; Liu, J.; Tian, D.; Yu, X. Genetic diversity and population structure of cultivated bromeliad accessions assessed by SRAP markers. Sci. Hortic 2012, 141, 1–6.
[31]
Bianco, C.L.; Fernández, J.A.; Migliaro, D.; Crinò, P.; Egea-Gilabert, C. Identification of F1 hybrids of artichoke by ISSR markers and morphological analysis. Mol. Breed 2011, 27, 157–170.
[32]
Goldman, J.J. The use of ISSR markers to identify Texas bluegrass interspecific hybrids. Plant Breed 2008, 127, 644–646.
[33]
Carvalho, A.; Matos, M.; Lima-Brito, J.; Guedes-Pinto, H.; Benito, C. DNA fingerprint of F1 interspecific hybrids from the Triticeae tribe using ISSRs. Euphytica 2005, 143, 93–99.
[34]
Poczai, P.; Mátyás, K.K.; Szabó, I.; Varga, I.; Hyv?nen, J.; Cernák, I.; Gorji, A.M.; Decsi, K.; Taller, J. Genetic variability of Thermal Nymphaea (Nymphaeaceae) population based on ISSR markers: Implications on relationships, hybridization, and conservation. Plant Mol. Biol. Rep 2011, 29, 906–918.
[35]
Fang, D.Q.; Roose, M.L. Identification of closely related cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet 1997, 95, 408–417.
[36]
Palai, S.K.; Rout, G.R. Characterization of new variety of Chrysanthemum by using ISSR markers. Hortic. Bras 2011, 29, 613–617.
[37]
Sabir, A.; Kafkas, S.; Tangolar, S.; Büyükalaca, S. Genetic relationship of grap cultivar by ISSR (inter-simple sequence repeats) markers. Eur. J. Hort. Sci 2008, 73, 84–88.
[38]
Sarthou, C.; Samadi, S.; Boisselier-Dubayle, M.C. Genetic structure of the saxicole Pitcairnia geyskesii (Bromeliaceae) on inselbergs in French Guiana. Am. J. Bot 2001, 88, 861–868.
[39]
Boisselier-Dubayle, M.C.; Leblois, R.; Samadi, S.; Lambourdic, J.; Sarthou, C. Genetic structure of the xerophilous bromliad Pitcairnia geyskesii on inselbergs in French Guiana—A test of the forest refuge hypothesis. Ecography 2010, 33, 175–184.
[40]
Bromeliad Encyclopedia. Florida Council of Bromeliad Societies, Available online: http://fcbs.org , accessed on 20 January 2012.
[41]
Gross, C.L.; Nelson, P.A.; Haddadchi, A.; Fatemi, M. Somatic mutations contribute to genotypic diversity in sterile and fertile populations of the threatened shrub, Grevillea rhizomatosa (Proteaceae). Ann. Bot 2012, 109, 331–342.
[42]
Meneghetti, S.; Costacurta, A.; Morreale, G.; Calò, A. Study of intra-varietal genetic variability in grapevine cultivars by PCR-derived molecular markers and correlations with the geographic origins. Mol. Biotechnol 2012, 50, 72–85.
[43]
Meneghetti, S.; Poljuha, D.; Frare, E.; Costacurta, A.; Morreale, G.; Bavaresco, L.; Calò, A. Inter- and intra-varietal genetic variability in Malvasia cultivars. Mol. Biotechnol 2012, 50, 189–199.