The process parameters of enzymatic hydrolysis and molecular weight distribution of glutamine (Gln) peptides from soybean meal were investigated. The Protamex ? hydrolysis pH of 6.10, temperature of 56.78 °C, enzyme to substrate ratio (E/S) of 1.90 and hydrolysis time of 10.72 h were found to be the optimal conditions by response surface methodology (RSM) for a maximal degree of hydrolysis (DH) value of 16.63% and Gln peptides content at 5.95 mmol/L. The soybean meal was hydrolyzed by a combination of Protamex ? and trypsinase so that DH and Gln peptides would reach 22.02% and 6.05 mmol/mL, respectively. The results of size exclusion chromatography indicated that the relative proportion of the molecular weight < 1000 Da fraction increased with DH values from 6.76%, 11.13%, 17.89% to 22.02%, most notably the 132–500 Da fractions of hydrolysates were 42.14%, 46.57%, 58.44% and 69.65%. High DH values did not lead to high Gln peptides content of the hydrolysate but to the low molecular weight Gln peptides.
References
[1]
Hojilla-Evangelista, M.P.; Sessa, D.J.; Mohamed, A. Functional properties of soybean and lupin protein concentrates produced by ultrafiltration-diafiltration. J. Am. Oil. Chem. Soc 2004, 81, 1153–1157.
Lacey, J.M.; Wilmore, D.W. Is glutamine a conditionally essential amino acid? Nutr. Rev 1990, 48, 297–309.
[4]
Rombouts, I.; Lamberts, L.; Celus, I.; Lagrain, B.; Brijs, K.; Delcour, J.A. Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. J. Chromat 2009, 1216, 5557–5562.
[5]
Harstad, O.M.; Prestl??kken, E. Rumen degradability and intestinal indigestibility of individual amino acids in corn gluten meal, canola meal and fish meal determined in situ. Anim. Feed 2001, 94, 127–135.
[6]
Han, B.Z.; Rombouts, F.M.; Robert Nout, M.J. Amino acid profiles of sufu, a Chinese fermented soybean food. J. Food Comp. Anal 2004, 17, 689–698.
[7]
Sacks, G.S. Effect of glutamine-supplemented parenteral nutrition on mortality in critically ill patients. Nutr. Clin. Pract 2011, 26, 44–47.
[8]
Prabhu, R.; Thomas, S.; Balasubramanian, K.A. Oral glutamine attenuates surgical manipulation-induced alterations in the intestinal brush border membrane. J. Surg. Res 2003, 115, 148–156.
[9]
Rogero, M.M.; Tirapegui, J.; Pedrosa, R.G.; Castro, I.A.D.; Oliveira Pires, I.S.D. Effect of alanyl-glutamine supplementation on plasma and tissue glutamine concentrations in rats submitted to exhaustive exercise. Nutrition 2006, 22, 564–571.
[10]
Schneider, T.; Butzb, P.; Ludwig, H.; Tauscher, B. Pressure-induced formation of pyroglutamic acid from glutamine in neutral and alkaline solutions. LWT Food Sci. Technol 2003, 36, 365–367.
[11]
Tanabe, S.; Watanabe, M.; Arai, S. Production of a high-glutamine oligopeptide fraction from gluten by enzymatic treatment and evaluation of its nutritional effect on the small intestine of rats. J. Food Biochem 1992, 16, 235–248.
[12]
Wu, Z.P.; Chang, S.; Jin, Q.G. Research on the effects of glutamine and soybean peptide supplementation on the structure of kidney filtration barrier and component of urinary of over-training rats. J. Guangzhou Sport Univ 2008, 28, 93–97. (in Chinese).
[13]
Peri?in, D.; Radulovi?-Popovi?, L.J.; Va?tag, ?.; Madarev-Popovi?, S.; Trivi?, S. Enzymatic hydrolysis of protein isolate from hull-less pumpkin oil cake: Application of response surface methodology. Food Chem 2009, 115, 753–757.
[14]
Lv, Y.; Guo, S.T.; Yang, B.C. Aggregation of hydrophobic soybean protein hydrolysates: Changes in molecular weight distribution during storage. LWT Food Sci. Technol 2009, 42, 914–917.
[15]
Tavares, T.G.; Contreras, M.M.; Amorim, M.; Martín-álvarez, P.J.; Pintado, M.E.; Recio, I.; Malcata, F.X. Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein ydrolysates obtained with cardoon extract. Int. Dairy J 2011, 21, 926–933.
[16]
Contreras, M.D.M.; Hernández-Ledesma, B.; Amigo, L.; Martín-álvarez, P.J. Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology. LWT Food Sci. Technol 2011, 44, 9–15.
[17]
Murthy, M.; Swaminathan, T.; Rakshit, S.K.; Kosugi, Y. Statistical optimization of lipase catalyzed hydrolysis of methyloleate by response surface methodology. Bioprocess. Eng 2000, 22, 35–39.
[18]
Xie, Y.L.; Ma, C.Y.; Wang, J.S. Optimization of the trypsinase hydrolysis condition of glutamine peptides from defatted soybean meal by response surface analysis. J. Henan Univ. Technol. (Nat. Sci. Ed.) 2009, 30, 25–28. (in Chinese).
[19]
Chen, L.; Chen, J.S.; Ren, J.Y.; Zhao, M.M. Modifications of soy protein isolates using combined extrusion pretreatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydroc 2011, 25, 887–897.
[20]
Guo, Y.X.; Pan, D.D.; Tanokura, M. Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. Food Chem 2009, 114, 328–333.
[21]
Adler-Nissen, J. Limited enzymic degradation of proteins: A new approach in the industrial application of hydrolysates. J. Chem. Tech 1982, 32, 138–156.
[22]
Marlene, T.; Don, E.O. Quantification of glutamine in proteins and peptides using enzymatic hydrolysis and reverse-phase high-performance liquid chromatography. Anal. Chem 1999, 269, 143–148.
[23]
Dong, S.Y.; Zeng, M.Y.; Wang, D.F.; Liu, Z.Y.; Zhao, Y.H.; Yang, H.C. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem 2008, 107, 1485–1493.