All Title Author
Keywords Abstract

Photosensized Controlling Benzyl Methacrylate-Based Matrix Enhanced Eu3+ Narrow-Band Emission for Fluorescence Applications

DOI: 10.3390/ijms13033718

Keywords: europium complex, UV-curing, optical tuning, metal-ion chelating, fluorescence detection

Full-Text   Cite this paper   Add to My Lib


This study synthesized a europium (Eu 3+) complex Eu(DBM) 3Cl-MIP (DBM = dibenzoyl methane; Cl-MIP = 2-(2-chlorophenyl)-1-methyl-1 H-imidazo[4,5-f][1,10]phenanthroline) dispersed in a benzyl methacrylate (BMA) monomer and treated with ultraviolet (UV) light for polymerization. Spectral results showed that the europium complex containing an antenna, Cl-MIP, which had higher triplet energy into the Eu 3+ energy level, was an energetically enhanced europium emission. Typical stacking behaviors of π–π interactions between the ligands and the Eu 3+-ion were analyzed using single crystal X-ray diffraction. Regarding the luminescence performance of this europium composite, the ligand/defect emission was suppressed by dispersion in a poly-BMA (PBMA) matrix. The underlying mechanism of the effective enhancement of the pure Eu 3+ emission was attributed to the combined effects of structural modifications, defect emissions, and carrier charge transfer. Fluorescence spectra were compared to the composite of optimized Eu 3+ emission where they were subsequently chelated to four metal ions via carboxylate groups on the BMA unit. The optical enhanced europium composite clearly demonstrated highly efficient optical responses and is, therefore a promising application as an optical detection material.


[1]  Lenaerts, P.; Driesen, K.; Van Deun, R.; Binnemans, K. Covalent coupling of luminescent tris(2-thenoyl-trifluoroacetonato)lanthanide(III) complexes on a merrifield resin. Chem. Mater 2005, 17, 2148–2154.
[2]  Bergstedt, M.D.T.; Zhang, C.; Saab, A.P.; O’Regan, M.B; Bazan, G.C.; Srdanov, V.I.; Heeger, A.J. Narrow bandwidth luminescence from blends with energy transfer from semiconducting conjugated polymers to europium complexes. Adv. Mater. 1999, 11, 1349–1354.
[3]  Hong, Z.R.; Liang, C.J.; Li, R.G.; Li, W.L.; Zhao, D.; Fan, D.; Wang, D.Y.; Chu, B.; Zang, F.X.; Hong, L.S.; Lee, S.T. Rare earth complex as a high-efficiency emitter in an electroluminescent device. Adv. Mater 2001, 13, 1241–1245.
[4]  Shunmugam, R.; Tew, G.N. Polymers that contain ligand metals in their side chain: building foundation for functional materials in optoelectronic applications with an emphasis on lanthanide ions. Macromol. Rapid Commun 2008, 29, 1355–1362.
[5]  Xin, H.; Li, F.Y.; Guan, M.; Huang, C.H.; Sun, M.; Wang, K.Z.; Zhang, Y.A.; Jin, L.P. Carbazole-functionalized europium complex and its high-efficiency organic electroluminescent properties. J. Appl. Phys 2003, 94, 4729–4731.
[6]  Moynihan, S.; Iacopino, D.; O’Carroll, D.; Doyle, H.; Tanner, D.A.; Redmond, G. Emission colour tuning in semiconducting polymer nanotubes by energy transfer to organo-lanthanide dopants. Adv. Mater 2007, 19, 2474–2479.
[7]  Carlos, L.D.; Sá Ferreira, R.A.; Rainho, J.P.; de Zea Bermudez, V. Fine-tuning of the chromaticity of the emission color of organic–inorganic hybrids co-doped with EuIII, TbIII, and TmIII. Adv. Funct. Mater 2002, 12, 819–823.
[8]  Kido, J.; Okamoto, Y. Organo Lanthanide metal complexes for electroluminescent materials. Chem. Rev 2002, 102, 2357–2368.
[9]  Banks, E.; Ueba, Y.; Okamoto, Y. Lanthanide fluorescence as a probe of ionomer structure. Ann. NY. Acad. Sci 1981, 366, 356–372.
[10]  Barja, B.C.; Remorino, A.; Aramendía, P.F. Luminescence quenching of Eu(III) carboxylates by Cu(II) in a composite polymer xerogel film. Photochem. Photobiol 2006, 82, 43–49.
[11]  Wu, M.; Lakowicz, J.R.; Geddes, C.D. Enhanced lanthanide luminescence using silver nanostructures: Opportunities for a new class of probes with exceptional spectral characteristics. J. Fluoresc 2005, 15, 53–59.
[12]  Bowen, L.M.; Muller, G.; Riehl, J.P.; Dupureur, C.M. lanthanide spectroscopic studies of the dinuclear and Mg(II)-dependent PvuII restriction endonuclease. Biochemistry 2004, 43, 15286–15295.
[13]  Strohriegl, P.; Grazulevicius, J.V. Charge-transporting molecular glasses. Adv. Mater 2002, 14, 1439–1452.
[14]  Chen, A.C.A.; Culligan, S.W.; Geng, Y.; Chen, S.H.; Klubek, K.P.; Vaeth, K.M.; Tang, C.W. Organic polarized light-emitting diodes via F?rster energy transfer using monodisperse conjugated oligomers. Adv. Mater 2004, 16, 783–738.
[15]  Kline, R.J.; McGehee, M.D. Morphology and charge transport in conjugated polymers. J. Macromol. Sci. Part C 2006, 46, 27–45.
[16]  Rivaton, A.; Mailhot, B.; Derderian, G.; Bussiere, P.O.; Gardette, J.L. Investigation of the photophysical processes and photochemical reactions involved in PVK Films irradiated at λ > 300 nm. Macromolecules 2003, 36, 5815–5824.
[17]  Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.; Wang, J. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.
[18]  Liang, H.; Wu, W.; Wang, Y.; Li, Z. Fluorescence study of Eu chelates in solution and polymer matrix. Spectrochim. Acta Part A 2005, 61, 2687–2690.
[19]  Guan, M.; Bian, M.; Li, Z.Q.; Xin, F.Y.; Huang, C.H. Bright red light-emitting electroluminescence devices based on a functionalized europium complex. New J. Chem 2003, 27, 1731–1734.
[20]  Lam, M.K.; Kwok, K.L.; Tse, S.C.; So, S.K.; Yuan, J.B.; Leung, L.M.; Gong, M.L. Heterojunction OLEDs fabricated by Eu ternary complexes with conducting secondary ligands. Opt. Mater 2006, 28, 709–713.
[21]  Li, H.; Inoue, S.; Machida, K.; Adachi, G. Preparation and luminescence properties of organically modified silicate composite phosphors doped with a europium (III) β-diketonate complex. Chem. Mater 1999, 11, 3171–3176.
[22]  Wada, A.; Watanabe, M.; Yamanoi, Y.; Nishihara, H. Modification of the luminescence spectra of chloro(tetrapyridylcyclotetramine) europium complexes by fine tuning of the Eu-Cl distance with outer-sphere counterions in the solid state, in a polymer matrix and in solution. Chem. Commun 2008, 1671–1673.
[23]  Wen, X.; Li, M.; Wang, Y.; Zhang, J.; Fu, L.; Hao, R.; Ma, Y.; Ai, X. Colloidal nanoparticles of a europium complex with enhanced luminescent properties. Langmuir 2008, 24, 6932–6936.
[24]  Féau, C.; Klein, E.; Kerth, P.; Lebeau, L. Synthesis of a coumarin-based europium complex for bioanalyte labeling. Bioorg. Med. Chem. Lett 2007, 17, 1499–1503.
[25]  Alonso, I.; Carretero, J.C.; Ruano, J.L.G. Benzyl methyl (S)-2-(p-tolylsulfinyl)maleate: An efficient dienophile for the enantioselective synthesis of cyclohexadienes. J. Org. Chem 1993, 58, 3231–3232.
[26]  Lee, J.F.; Chen, Y.C.; Lin, J.T.; Wu, C.C.; Chen, C.Y.; Dai, C.A.; Chao, C.Y.; Chen, H.L.; Liau, W.B. Blue light-emitting and electron-transporting materials based on dialkyl-functionlized anthracene imidazophenanthrolines. Tetrahedron 2011, 67, 1696–1702.
[27]  Su, W.F.; Lee, J.F. Bismuth titanate nanoparticle dispersed polyacrylate smart material. Polym. Prepr 2002, 43, 1219–1220.
[28]  Su, W.F.; Lee, J.F.; Chen, M.Y.; Ho, R.M. Bismuth titanate nanoparticles dispersed polyacrylates. J. Mater. Res 2004, 19, 2343–2348.
[29]  Patel, D.G.; Graham, K.R.; Reynolds, J.R. A Diels–Alder crosslinkable host polymer for improved PLED performance: the impact on solution processed doped device and multilayer device performance. J. Mater. Chem 2012, 22, 3004–3014.
[30]  Feng, L.; Hu, J.; Liu, Z.; Zhao, F.; Liu, G. Preparation and properties of optically active poly(N-methacryloyl l-leucine methyl ester). Polymer 2007, 48, 3616–3623.
[31]  Mondal, J.A.; Ramakrishna, G.; Singh, A.K.; Ghosh, H.N.; Mariappan, M.; Maiya, B.G.; Mukherjee, T.; Palit, D.K. Ultrafast intramolecular electronic energy-transfer dynamics in a bichromophoric molecule. J. Phys. Chem. A 2004, 108, 7843–7852.
[32]  Maciel, G.S.; Kim, K.S.; Chung, S.J.; Swiatkiewicz, J.; He, G.S.; Prasad, P.N. Linear and nonlinear optical properties of an erbium two-photon dye salt. J. Phys. Chem. B 2001, 105, 3155–3157.
[33]  Zhang, L.; Li, B.; Zhang, L.; Chen, P.; Liu, S. Synthesis, characterization, and luminescent properties of europium complexes with fluorine functionalized phenanthroline. J. Electrochem. Soc 2009, 156, H202–H207.
[34]  Yang, C.; Fu, L.M.; Wang, Y.; Zhang, J.P.; Wong, W.T.; Ai, X.C.; Qiao, Y.F.; Zou, B.S.; Gui, L.L. A Highly luminescent europium complex showing visible-light-sensitized red emission: Direct observation of the singlet pathway. Angew. Chem. Int. Ed 2004, 43, 5010–5013.
[35]  Bondarev, S.L.; Knyukshto, V.N.; Stepuro, V.I.; Stupak, A.P.; Turbana, A.A. Fluorescence and electronic structure of the laser dye DCM in solutions and in polymethylmethacrylate. J. Appl. Spectrosc 2004, 71, 194–201.
[36]  Espinosa, J.F.; Fernández, M.J.; Grant, K.B.; Gude, L.; Rodrigo, M.M.; Lorente, A. Synthesis, DNA intercalation and europium(III)-triggered DNA photocleavage by a bis-proflavine succinamide conjugate. Tetrahedron Lett 2004, 45, 4017–4020.
[37]  Montgomery, C.P.; Murray, B.S.; New, E.J.; Pal, R.; Parker, D. Cell-penetrating metal complex optical probes: Targeted and responsive systems based on lanthanide luminescence. Acc. Chem. Res 2009, 42, 925–937.
[38]  Decker, C. Kinetic Study and new applications of UV radiation curing. Macromol. Rapid Commun 2002, 23, 1067–1093.
[39]  Yamada, M.; Nakamura, Y.; Hasegawa, T.; Itoh, A.; Kuroda, S.; Shimao, I. Oxidative chlorination of 1,10-Phenanthroline and its derivatives by phosphorus pentachloride in phosphoryl chloride. Bull. Chem. Soc. Jpn 1992, 65, 2007–2009.
[40]  Kessler, M.A. Determination of copper at ng mL?1-levels based on quenching of the europium chelate luminescence. Anal. Chim. Acta 1998, 364, 125–129.
[41]  Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev 2009, 109, 4283–4374.
[42]  Steck, E.A.; Day, A.R. Reactions of phenanthraquinone and retenequinone with aldehydes and ammonium acetate in acetic acid solution. J. Am. Chem. Soc 1943, 65, 452–456.


comments powered by Disqus